Страница 4 из 19
Как уже отмечалось, в настоящее время ИИ используется, прежде всего, для распознавания образов, прогнозирования и управления сложными системами. Однако в принципе ИИ может быть ориентирован на любые задачи, которые в настоящее время решают люди. При этом необходимо оговориться, что ИИ способен подменить людей в настоящее время только в рамках имитационных, функциональных и операционных задач. Это означает, что ИИ применяется лишь тогда, когда извне ему ставится четкая задача, которая может быть выполнена в рамках наперед заданной последовательности шагов или операций. При этом сама задача носит имитационный, т. е. воспроизводимый с образца характер. Творческие задачи с созданием нового ИИ, по крайней мере на сегодняшний момент, решать не готов.
В начале XXI века за счет мощных программно-аппаратных комплексов ИИ стал распознавать изображения с 98 % точностью и делает он это лучше, чем человек, который распознает изображения с точностью до 95 %. Кроме того, впервые системы ИИ научились создавать синтетические изображения, которые практически неотличимы от оригинальных фотографий. Появилась возможность создания несуществующих личностей, которые, по крайней мере, в информационном пространстве могут жить полноценной жизнью, осуществляя с помощью чат-ботов коммуникации с людьми, информируя о своей жизни через ролики в YouTube и т. п. Согласно проведенным экспериментам, люди распознают ошибку, т. е. определяют искусственный характер изображения лишь в 3 % случаев из 100 %.
Системы ИИ добились впечатляющих результатов в конечных конкурентных играх: от шахмат до игры в го. В 2017 г. ИИ впервые победил человека в игре, где наряду с комбинаторикой требовалась рефлексия позиции, а именно – в покере. Методы ИИ в последние годы обеспечили прорыв в переводе. Другие направления задач, где осуществляется быстрый прогресс, включают в себя распознавание речи, автомобильную навигацию и прогнозирование биржевых процессов.
Успехи ИИ связаны с тремя основными факторами. Во-первых, с использованием новой высокопроизводительной элементной базы. Во-вторых, с применением новых программных решений, базирующихся на сложной комбинаторике и машинном обучении. В-третьих, с широким использованием робототехники как периферийных устройств ИИ, аналогичным периферийным устройствам человека, типа рук, ног, по отношению к мозгу.
Хотя в последние 10 лет ИИ развивался экспоненциально, вряд ли следует ожидать таких же темпов прогресса и в перспективе. Как правило, технические нововведения развиваются по гиперциклу Гартнера. При гиперцикле после долгого периода созревания наступает этап экспоненциальных перемен. В результате система достигает уровня зрелости и определенное время оказывается как бы на плато, раздвигаясь вширь, а не развиваясь вглубь. Затем наступает спад, связанный с насыщением данной технологией наиболее продвинутых пользователей. Однако спад является недолговременным и сменяется умеренным ростом, который характерен для любой зрелой технологии. Вряд ли есть основания полагать, что ИИ не будет развиваться в рамках гиперцикла. Сегодня центральной задачей ИИ является создание эффективных гибридных систем, где ИИ взаимодействует с человеком.
§ 2. ИИ, распознание угроз и оценка рисков
Магистральным направлением использования ИИ являются вопросы безопасности. При решении этой группы вопросов как в никакой другой сфере важно заблаговременно распознавать угрозы и оценивать риски. Распознавание угрозы мало чем отличается от распознавания лица. Любая угроза имеет определенный устойчивый паттерн, который может быть выражен через набор числовых характеристик. Поскольку вопросы распознавания в решающей степени зависят от скорости и полноты вычислений, то ИИ как комбинаторная машина, позволяет распознавать угрозы намного быстрее и точнее, чем человек.
Правда, есть одно важное ограничение. ИИ способен распознавать лишь те угрозы, которые имели место в прошлом. Поскольку в основе распознавания лежит машинное обучение, то фактически ИИ на числовых массивах прошлого устанавливает профиль угрозы, а потом ищет этот профиль в поступающих информационных потоках.
До сих пор остается открытым вопрос, может ли человек распознавать угрозы, которых ранее не существовало. На этот счет имеются различные точки зрения. Большинство психологов занимают точку зрения, что человек способен к этому. В то же время специалисты когнитивных наук полагают, что нет принципиальной разницы между переработкой информации у машины и человека, и соответственно, человек не может решать задачи, которые не решает машина.
Авторы доклада Центра новой американской безопасности полагают, что человек обладает способностью к решению задача, не доступных, по крайней мере, в настоящее время. Например, человек способен изменить правила игры, в то время как ИИ всегда играет по правилам. Однако применительно к новым, ранее не существовавшим угрозам, на сегодняшний день не существует однозначного ответа на вопрос: способны ли люди распознавать угрозы, с которыми до этого никогда не сталкивались.
Создание ИИ носит феноменальный характер. Существует множество различных программноаппаратных комплексов, каждый из которых уникален, а потому феноменален. В отличие от персональных компьютеров, планшетов, смартфонов и т. п. ИИ носят единичный, в крайнем случае, мелкосерийный, но отнюдь не массовый характер. Если явление не носит массового характера, то оно не может быть описано количественно. Соответственно прогноз тенденций в области ИИ – это всегда качественный прогноз.
Другое дело, что отдельные аспекты этого качественного процесса могут иметь количественное выражение, типа знаменитого закона Мура[7], и тем самым служить ориентиром прогнозирования. При определении тенденции развития сложных явлений, в т. ч. ИИ, сегодня наиболее широко используют Форсайт метод, или сценарное прогнозирование. При том, что форсайт прогнозы являются сегодня абсолютно преобладающей формой составления прогнозов, разработки плановых программ на государственном уровне, включая США, страны ЕС, эффективность их крайне низка. Достаточно привести два примера. С 2003 по 2010 гг. было осуществлено на уровне федеральных органов власти США, исследовательских подразделений Федеральной резервной системы (ФРС) более 15 форсайт прогнозов дальнейшего развития глобальной финансовой системы. Ни в одном из прогнозов не нашли своего места криптовалюты и цифровые активы. Ни в одном прогнозе не были упомянуты смарт-контракты и цифровые монеты.
Это неудивительно. Во всех странах мира форсайт составляют статусные люди, которые плоть от плоти сложившейся системы. Соответственно, они видят в будущем линейное, но масштабируемое продолжение настоящего. А это принципиально не так.
В этой связи Центр новой американской безопасности предлагает использовать локусный подход к прогнозированию. Он состоит в том, что в рамках среднесрочного прогноза на горизонте три-пять лет верна мысль известного американского фантаста и мыслителя У.Гибсона: «Будущее уже наступило.
Просто оно пока неравномерно распределено». Для среднесрочных прогнозов локусный подход является не только наиболее эффективным, но и максимально дешевым и простым. Используя отработанные методы распознавания образов и обнаружения аномалий, осуществляется сканирование ноу-хау, разработок, гипотез в той области или сфере знания, применительно к которой осуществляется прогнозирование. Это позволяет выявить локусы будущего, а затем собственно прогноз сводится к тому, чтобы постараться оценить реалистично темпы экспансии этих локусов, как правило, находящихся на периферии, в ключевые сектора мировой и национальных экономик.
Тенденции всегда проявляют себя как возможности, т. е. варианты развития будущего. Практически все эмпирические исследования в области социальной динамики показывают, что у групп действия существует не один, а несколько вариантов поведения практически в любой ситуации.
7
Гордон Эрл Мур (США) – почетный председатель совета директоров и основатель корпорации Intel, основоположник «закона Мура», который сводится к тому, что количество транзисторов в кристалле микропроцессора удваивается каждый год. В 1975 году он изменил временную составляющую закона и заявил об удвоении количества транзисторов каждые два года.