Страница 5 из 19
Любое лицо, принимающее решение, заинтересовано в снижении риска. Собственно, ИИ и является мощнейшим инструментом подавления рисков. Однако это относится к гносеологическим рискам. Они минимизируются за счет получения дополнительной информации и ее глубокой обработки, позволяющей гораздо более достоверно, чем раньше судить о движущих силах и логике той или иной ситуации. Что же касается онтологического риска, то ИИ бессилен перед ним. В конечном счете, ИИ – это мощнейший многофункциональный вычислитель. Если же параметры, которые он вычисляет, предельно нестабильны, носят дискретный, а не непрерывный характер, находятся в состоянии, близком к белому шуму[8], то даже самый мощный ИИ не сможет оказать большой помощи лицу, принимающему решения.
Использование ИИ позволяет гораздо более реалистично, чем раньше, заблаговременно определить экзистенциональные угрозы, а также позволяет в режиме мониторинга сканировать угрозы со стороны другого участника конфликта.
§ 3. ИИ как технология тройного назначения
ИИ – это технология тройного назначения. ИИ может быть использован как для гражданских, так и для военных целей. Отдельное направление использования ИИ – мафиозно-террористическое. Поскольку некоторые задачи, требующие интеллекта, являются доброкачественными с точки зрения права, а другие – нет, то ИИ обладает свойством тройного использования, также как и человеческий интеллект.
О гражданском, мирном использовании ИИ СМИ сообщают буквально каждый день. Но, откровенно говоря, самое активное использование ИИ наблюдается в военных целях.
Например, Министерство обороны США изучает множество разнообразных направлений использования ИИ. Эта работа ведется в основном в рамках DARPA (Управление перспективных исследовательских проектов Минобороны США) и IARPA (Агентство передовых исследований в сфере разведки). Разработкой стратегии использования ИИ в сфере национальной безопасности и координации исследований занимается Канцелярия помощника Министра обороны по исследованиям и инженерии, а сам помощник несет личную ответственность перед министром обороны, администрацией президента и Конгрессом за максимально эффективное использование ИИ в интересах национальной безопасности[9].
В апреле 2017 г. под руководством заместителя министра обороны США по разведке создана и начала активно работать междисциплинарная и многофункциональная команда по разработке стратегии и тактики алгоритмических войн, а также их программно-аппаратному обеспечению со стороны ИИ. Работа этой команды известна как проект Maven. Главная цель проекта Maven состоит в максимально быстром внедрении ИИ в оборонительные и наступательные системы в сфере военного, финансово-экономического и поведенческого противоборства. Проект призван продемонстрировать огромный потенциал технологий ИИ. В рамках проекта на период до 2020 г. поквартально расписаны цели и ресурсы. Информация по проекту Maven доступна комитетам Сената и палаты Представителей по разведке, т. к. относится к засекреченной сфере.
В начале 2018 г. директор проекта Maven заявил: «Maven предназначен для того, чтобы быть пилотным проектом. Он призван продемонстрировать неисчерпаемый потенциал ИИ в сфере алгоритмических войн, а конкретно кибер-, финансово-экономических и поведенческих конфликтов и противоборств, а также в сфере управления и прогнозирования конфликтов на пяти полях боя: на земле, в воздухе, в космосе, под водой и в киберсреде».
Ожидается, что к 2020 г. ИИ даст максимальный эффект в разведке для обработки и анализа больших, в том числе неструктурированных, зашумленных и неполных. Одним из результатов проекта Maven стало создание системы опережающего мониторинга и прогнозирования на основе разнообразных данных действий противника (на примере борьбы с ИГИЛ). Система Cointer-ISIL-Maven начала эксплуатироваться с июля 2017 г., она включает в себя сложный программно-аппаратный комплекс, состоящий как из периферийных систем, так и центрального ИИ. В качестве периферийных систем используются автоматизированные дроны, оснащенные системами компьютерного оптического зрения. Среди принципиально новых модулей центрального ИИ, созданного в рамках проекта, необходимо отметить гибкие модифицированные блоки нейронных сетей с машинным обучением, позволяющих распознавать нечеткую оптическую информацию на уровне более высоком, чем наблюдатели-люди.
Помимо засекреченных, у разведывательного сообщества есть несколько публично рекламируемых исследовательских проектов в области ИИ. На начало 2018 г. только в интересах ЦРУ осуществляется 137 публично финансируемых проектов, связанных с ИИ. В основном эти проекты направлены на решение таких задач, как анализ разнородной структурированной и неструктурированной разноформатной, зашумленной и неполной информации. Более 2 5 проектов связаны с использованием ИИ, в том числе в составе симбиотического интеллекта, совместно с группами экспертов для прогнозирования будущих событий, таких как террористические атаки, гражданские беспорядки, финансово-экономические, политические и военные кризисы и т. п.
IARPA в настоящее время финансирует крупнейший в истории США проект по созданию человеко-машинной платформы симбиотического (гибридного – человек + ИИ) интеллекта для распознавания слабых сигналов в информационном шуме и прогнозирования маловероятных событий. Также ИИ активно используется для разработки алгоритмов одновременного многоязычного распознавания речи и перевода акустической речи в тексты с уровнем, превосходящим применяющиеся в настоящее время системы машинного перевода.
У ИИ может быть многообещающее будущее в сфере военной логистики. Например, ВВС США работает над использованием ИИ для составления графиков обслуживания летательных средств, включая графики дозаправки в воздухе и проведения ремонта. Вместо того, чтобы осуществлять дорогостоящий ремонт, когда самолет или вертолет выходит из строя из-за поломок, ИИ разработал модели, позволяющие проводить предупредительное техническое обслуживание воздушных судов. Это повышает надежность их эксплуатации при более низких затратах. Данная система, созданная в 2017 г., включает в себя встраиваемые в воздушные суда датчики, передающие шифрованные сигналы центральному интеллекту, в котором они становятся базой для работы алгоритма прогнозирования.
В сентябре 2017 г. Управление материально-технического снабжения сухопутных войск США подписало второй контракт с IBM на сумму 135 млн. долларов для создания персонального электронного помощника бойца штурмового отряда на базе ИИ. Этот проект стал продолжением первого проекта, начатого в 2014 и завершенного в 2016 г. В рамках первого проекта электронный индивидуальный помощник-эксперт был создан для работников полевых штабов дивизий быстрого развертывания на базе IBM Watson.
ВМС США заказали в 2017 г. версию Watson, предназначенную для разработки планов оптимального материально-технического снабжения военно-морских группировок и отдельных судов, находящихся в мировом океане, и контроля над их выполнением. Командование сухопутной армии полагает, что использование логистического Watson в армии обеспечит ежегодную экономию 100 млн. долларов за счет оптимального распределения логистических потоков и планов материально-технического обеспечения вооруженных сил.
Наиболее активно ИИ будет использоваться министерством обороны США в киберпространстве.
В 2018 г. киберкомандование США разместило через DARPA заказы по использованию ИИ для мгновенного обнаружения аномалий и дыр в киберзащите. Представляется, что именно ИИ с его быстродействием позволит наиболее эффективно управлять боевыми киберплатформами на самой деликатной стадии киберпротивоборств – фазе проникновения в сети противника.
8
Термин «белый шум» обычно применяется к сигналу, имеющему автокорреляционную функцию. Белый шум некоррелирован по времени (или по другому аргументу), не определяет его значений во временной (или любой другой рассматриваемой аргументной) области.
9
См.: Artificial Intelligence and National Security. Congressional Research Service. 26.04.2018.