Добавить в цитаты Настройки чтения

Страница 3 из 19

Если подходить с инженерной точки зрения, то необходимо понять, где компьютеры сильнее людей, и что нам от них нужно. Посмотрим на эту проблему на примере анализа ФБР о провалах и успехах ИИ, связанных с борьбой с криминалом.

На сегодняшний день успехи достигнуты там, где имеются огромные массивы БД, ограниченное время для их анализа и возможность написать программу анализа. Грубо говоря, компьютер превосходит человека там, где имеет место огромная комбинаторика, т. е. наличие множества вариантов, короткое время исполнения и возможность вести анализ чего-либо путем выполнения последовательных операций, т. е. возможность написать алгоритм.

Где на сегодняшний день отмечены наибольшие прорывы? В анализе БД, распознавании образов, поиске незаметных на первый взгляд связей и закономерностей. Отсюда возникает простое заключение. Если бы человек имел бесконечное время на решение той или иной задачи, был дисциплинирован и имел неограниченный объем памяти, то он бы успешно решал все задачи, где компьютер уже сегодня первенствует над человеком. Самые знаменитые достижения компьютеров, подаваемых как ИИ, связаны с победой в играх – от шахмат до го, от покера до «бесконечных шашек». Любая игра имеет правила. А там где есть правила, путь к успеху лежит в комбинаторике и написании алгоритмов.

Приведенные соображения позволили информационным подразделениям ФБР совместно с Лабораторией искусственного интеллекта корпорации Google выработать следующее инженерное определение ИИ. Именно оно положено в разработку концепции архитектуры и перечня программных решений ФБР: ИИ – это программно-аппаратный комплекс, обеспечивающий поддержку и/или принятие результативных решений в динамичной, неустойчивой среде в установленное время, на основе заведомо неполной, нечеткой и не имеющей полной доказательной базы информации. Применительно к одним задачам ИИ самостоятельно принимает решения, но в большинстве случаев является элементом гибридного интеллекта, взаимодействуя с человеком.

Данное определение является инженерным по трем обстоятельствам. Прежде всего, оно задает критерий. Во-первых, результативность решений не носит абстрактного характера, а определяется в каждом конкретном случае постановщиком задачи. В одних случаях у ИИ может отсутствовать право на единственную ошибку, а в других – результативным решением может оказаться показатель, выше уже сложившегося уровня успешности решения проблемы.

Во-вторых, данное определение не привязывается к конкретным видам харда или софта. Возможно, завтра у нас появятся полноценные квантовые компьютеры. В университете Нотр-Дам уже сегодня идут эксперименты по использовании в качестве элементной базы компьютера живых бактерий. То же самое с софтом. Было бы самонадеянным утверждать, что и завтра вычислительные комплексы будут использовать машинное обучение и нейронные сети. Наконец, третий, принципиальный момент в определении – это то, что ИИ обязан научиться работать с неполной и частично лживой информацией. Это, пожалуй, самая сложная проблема.

Термин «ИИ» зачастую заменяет такие сложные и непонятные лицам, принимающим решения, термины, как нейронный сети, глубокое машинное обучение, дискриминантный анализ, многомерная статистика, вычислительная лингвистика и т. п. Согласно данным контент-анализа, приведенного Стэнфордским университетов в 2017 г., ИИ не в социальных СМИ, а в научных изданиях используется как синоним того или иного математико-статистического метода. Условно назовем это маркетинговым использованием термина ИИ. Наиболее широко это явление проявилось в англосаксонских странах, прежде всего США и Великобритании.

Для европейских публикаций и исследований характерно другое использование термина ИИ. В Европе, особенно в Германии и во Франции, ИИ по сути стал синонимом любых сложных экспертных систем, в основе которых лежит блок поиска, обработки и анализа информации. Такое понимание ИИ связано с тем, что в силу целого ряда факторов в большинстве стран ЕС не получили широкого развития наиболее современные методы дискретной математики и работа идет в направлении совершенствования информационно-аналитических систем, которые были созданы в конце XX – начале текущего века.

Свое понимание ИИ имеется в Японии, одной из трех лидирующих стран в этой сфере. Они понимают под ИИ программы, которые могут выполнять интеллектуальные функции человека вне зависимости от сферы их применения.

Авторы уже указанного доклада Центра новой американской безопасности, понимают ИИ также как автор этого термина – знаменитый математик, кибернетик, создатель множества языков программирования Джон Маккарти. Он определили ИИ, как «вычислительные методы, позволяющие решать нечеткие и противоречивые задачи в условиях многокритериального выбора и хронической неполноты информации».

С учетом разработок в области когнитивных вычислений, осуществленных уже после смерти Маккарти, Центром новой американской безопасности предлагается следующее, наиболее общее и в то же время рабочее определение: ИИ – это программноаппаратные вычислительные комплексы полного информационного цикла (включающего восприятие, фильтрацию, обработку, хранении информации, выполнение аналитических и синтетических когнитивных функций), позволяющие в режиме человек-машина или автономно принимать и реализовывать решения в сложной, динамичной и неопределенной среде.

Данное определение подчеркивает несколько ключевых концептов, без понимания которых лица, принимающие решения, не смогут сделать правильного выбора:

Во-первых, ИИ – это не машинное обучение, не нейронные сети и не другие виды программных продуктов. Это – всегда программно-аппаратные комплексы, в которых роль физических компонентов, как минимум, не меньше, чем информационных.

Большая часть программных методов ИИ была хорошо известна еще в 60-70-е гг. прошлого века, однако не могла быть реализована, поскольку компьютеры не обладали необходимым быстродействием. Тенденцией последних лет стало стремление ключевых производителей ИИ как можно больше наиболее важных функций упаковывать в непосредственно встроенный процессор и софт. Такая архитектура гарантирует производителям ИИ монополию на рынке. Кроме того, дальнейший скачок в области ИИ связан с изменением типов процессоров. Уже сегодня на смену кремнию приходят квазиквантовые компьютеры. Известно об успешной разработке и опробовании в Израиле сверхскоростного графе-нового компьютера. Известно, что в ряде стран мира были проведены успешные испытания процессоров для ИИ, созданных на алмазной основе, процессоров с так называемой «алмазной подложкой». Наконец, в 2017 г. команда Стэнфордского университета, университета г. Сеул, компании «Сименс» и Израильского технологического университета смогли создать работающий в реальном режиме биологический компьютер, где в качестве процессора используются молекулы. Т. е. будущее ИИ связано не столько с программами, сколько с прогрессом в области аппаратной части и новыми типами процессоров.

Во-вторых, полный цикл обработки информации в настоящее время осуществляется преимущественно на базе комбинаторных методов, глубокого обучения и нейронных сетей. Однако все три метода страдают тем недостатком, что успешно могут работать только с конечными задачами. Наиболее яркий пример конечной задачи – это любая игра, где наперед задано все количество возможных ситуаций и комбинаций, возникающих в ходе игры. Но следует считать, что комбинация нейронных сетей с машинным обучением в ближайшие годы будет господствующей в вычислительной технологии ИИ.

Наконец, в-третьих, тенденцией взаимодействия человек-машина в рамках ИИ является повышение уровня автономии ИИ, т. е. возложение на него частично или в полном объеме принятия решений. Это особенно ярко проявляется в военной и финансовой сфере, где счет идет на миллисекунды и соответственно вычислительная реакция превосходит человеческую.