Добавить в цитаты Настройки чтения

Страница 18 из 55



В заключении, которое мы приведем почти полностью, поскольку в нем четко сформулированы задачи учения о симметрии, достигнутые успехи и перспективы развития, автор говорит: «Задача усовершенствования учения о симметрии, которую мы себе ставим, задача, целиком основанная на операции перемены знака фигуры, с математической точки зрения, очевидно, сводится к выводу и исследованию всех групп симметрии (групп ортогональных преобразований) трехмерных фигур в четырехмерном пространстве. С точки зрения естествоиспытателя она сводится к интерпретации этих групп материальными трехмерными фигурами, к изображению и объяснению с их помощью известных явлений природы и предвидению новых.

Часть этой проблемы нами уже решена. Нами выведены все группы симметрии конечных кристаллографических материальных фигур, то есть все точечные группы фигур, удовлетворяющих закону рациональности параметров. Общее их число оказалось равным 122. Из них... 58 групп относятся к фигурам смешанной полярности. Далее мы установили 17 точечных групп с бесконечными осями. Эти группы, хотя и не относятся к кристаллографическим в узком смысле, но играют в кристаллографии громадную роль и должны, по нашему мнению, найти полезное применение во многих вопросах физики.

В настоящее время мы заняты вопросом выявления на основе новых представлений всего многообразия простых форм. Самая важная и трудоемкая задача — задача использования пространственных групп, которая должна с наибольшей полнотой осветить проблему структуры кристаллов, пока еще совсем не начата. Впереди маячат и другие важные проблемы симметрии, совсем не задетые в нашем обзоре: проблема диссимметрии, проблема материальных фигур многообразной полярности и т. д. Для нас ясно, что учение о симметрии отнюдь не может считаться законченной областью знания: оно будет жить и развиваться вместе с наукой в целом, с естествознанием в особенности и с его составной частью — кристаллографией» [148, с. 227].

Следующие работы, посвященные той же тематике, увидели свет только в 1951 г., причем за это время никаких существенных сдвигов в теории не произошло. В докладе [172] и главным образом в монографии [173] в более развернутом виде с использованием черно-белых иллюстраций был повторен вывод 58 точечных групп антисимметрии (младших). Помимо Г. Хееша и А: В. Шубникова, точечные группы антисимметрии выводили Б. А. Тавгер и В. М. Зайцев, В. Л. Инденбом (на основе теории неприводимых представлений групп, причем были выведены и группы цветной симметрии и группы предельной (магнитной) симметрии) и А. Ниггли. В 1966 г. В, А. Копцик в своей «энциклопедии» дал их графические изображения.

Практически развитие этого направления можно датировать 1951 г. в связи с выходом в свет работы А. В. Шубникова [173]. Спустя два года появились две работы У. Кокрена, в которых показана возможность использования идеи антисимметрии для решения некоторых вопросов структурной кристаллографии. В Советском Союзе вывод точечных групп симметрии и антисимметрии был распространен на пространственные группы. Общая теория пространственных групп антисимметрии (названных шубниковскими) была разработана А. М. Заморзаевым, и им же был осуществлен их вывод. Впоследствии под его руководством сформировалась Кишиневская школа теории симметрии," которая с середины 60-х годов занимает лидирующее положение в деле обобщения понятий симметрия и вывода соответствующих групп.

В 1954 г. выходит статья А. В. Шубникова [194], в которой рассмотрены пути приложения теории антисимметрии к классификации колеблющихся молекул, в квантовой механике, в рентгеноструктурном анализе. Впоследствии прогнозы Шубникова подтвердились.

В следующем году на основе работы Н. В. Белова был осуществлен вывод групп черно-белой симметрии. Этот вывод, видимо, был стимулирован возможностью использования шубниковских групп в рентгеноструктурном анализе. Вывод шубниковских групп был реализован с различных методологических позиций: методом «замены образующих» (Шубников-Заморзаев) и методом «цветного центрирования» (Белов). Перекрестное сравнение результатов позволило точно фиксировать и число шубниковских групп. К 1963 г. В. А. Копцик осуществил третий вывод шубниковских групп, построил их графические изображения по принципу Интернациональных таблиц и в целях большего удобства для кристаллоструктурщиков разработал так называемую двухчленную символику. С 1958 г. появляются многочисленные приложения шубниковских групп антисимметрии к проблемам физики кристаллов.

Малые кристаллографические (и некристаллографические) группы антисимметрии появились позже. Вначале наибольшее внимание было уделено 17 двумерным федоровским группам. Первым этими вопросами занимался Кокрен (по Веберу), затем Н. В. Белов, Н. Н. Неронова и Т. С. Смирнова в 1955 г., снова Н. В. Белов — в 1959 г. и через год — А. М. Заморзаев и А. Ф. Палистрант при этом первые авторы использовали метод цветного центрирования, вторые — шубниковский метод замены образующих у 17 плоских. Оба метода дали 46 существенно новых черно-белых групп.



Слоевые группы антисимметрии независимо друг от друга были получены в 1961 —1963 гг. двумя группами исследователей — Н. Н. Нероновой и Н. В. Беловым, а также А. Ф. Палистрантом и А. М. Заморзаевым. Существенно новых групп оказалось 368. Н. Н. Неронова и Н. В. Белов методом цветного центрирования вывели 244 группы антисимметрии стержней. Другими методами этот результат был повторен Э. И. Галярским и А. М. Заморзаевым в 1965 г.

В 1958 г. во втором издании брошюры [232] А. В. Шубников «оперативно» реагирует на бурное развитие теории симметрии: «Вслед за первой работой по антисимметрии, посвященной выводу групп антисимметрии конечных фигур, появились работы, в которых этот вывод был распространен на бесконечные фигуры типа кристаллических решеток (Н. В. Белов, А. М. Заморзаев). Антисимметрию иногда можно представлять как „двухцветную" (черно- белую) симметрию, и тогда она находит отклик в „многоцветной симметрии", начало которой положено Н. В. Беловым. Установленные нами 58 черно-белых групп конечных фигур оказались совпадающими с группами магнитной симметрии кристаллов (Б. А. Тавгер, В. Н. Зайцев). Число бесконечных черно-белых групп, установленное указанными выше авторами и их учениками, составляет 1651, причем нетрудно представить их в виде единой, легко обозреваемой системы, подчиняющейся системе 230 федоровских групп» [232, с. 9]. В том же году А. В. Шубников получил 21 предельную точечную группу антисимметрии, и результаты вывода тут же использовал для описания антисимметрии текстур [234]. В 1959 г. появляется статья А. В. Шубникова [241], в которой выведены предельные группы антисимметрии стержней. В заключении статьи указывается рецептура построения семиконтинуумов с помощью двух непараллельных трансляций, перпендикулярных оси «порождающего» стержня.

В 1961 г. выходит работа А. В. Шубникова [258], написанная, как указывает автор, по образцу опубликованной в 1959 г. полной систематики точечных групп классической симметрии. Все группы автор подразделяет на 14 рядов, каждый из которых порождает одинаковое количество черно-белых, в свою очередь разделенных на 27 бесконечных рядов групп некристаллографической антисимметрии.

В следующем году А. В. Шубников вывел группы (классы) симметрии и антисимметрии конечных и бесконечных лент [263, 264]', в которых он дополнил уже сложившуюся классификацию групп ортогональной и чернобелой симметрии. Группы антисимметрии конечных лент он получил, используя методы Н. В. Белова. Эти же группы были независимо получены в работах Н. В. Белова и его учеников, а также Т. Романом и А. Пабстом.

Последние работы А. В. Шубникова по антисимметрии 1965—1968 гг. посвящены уточнению классификации точечных групп симметрии и получению (на основе принципов антисимметрии) всех 32 кристаллографических классов из 11 аксиальных [299, 300, 329, 332, 335].

Этапы развития антисимметрии приведены в табл. 3, вне которой остались многочисленные усовершенствования системы обозначений групп антисимметрии, работы по их использованию при исследовании природных явлений, структур, форм.