Добавить в цитаты Настройки чтения

Страница 19 из 55



Следующим чрезвычайно интересным расширением понятия антисимметрии является антисимметрия различного . рода. Вот каким образом возникло это направление теории симметрии, восходящее, очевидно, к высказыванию А. В. Шубникова в работе [148]: «При подробной разработке... учения о симметрии и антисимметрии конечных фигур А. В. Шубников остановился преимущественно на черно-белой интерпретации антисимметрии как на самой наглядной и общедоступной. Однако уже в первом своем сообщении об идее антисимметрии в 1945 году он говорит не только о широком разнообразии толкований знака плюс или минус, но и о возможности одновременно приписывать точкам несколько качественно различных знаков (фигуры многообразной полярности). Спустя десятилетие, под влиянием появления первых приложений антисимметрии эту же идею многократной антисимметрии стали развивать (независимо от ее высказывания Шубниковым) молодые математики Кишиневского университета... под названием антисимметрии различного рода...

Таблица 3* Год Автор Открытие или вывод 1929—1930 Хееш G'2, G'30, G'3 (низшие сингонии) 1945—1951 Шубников Принцип антисимметрии G'30, 31 группа G'320, 17 предельных G'30 1952 Кокрен G'2 через G'32 1953 Заморзаев G'3 1955 Белов, Неронова, Смирнова G'3 1956 Белов G'21 1958 Шубников 21 предельная G'30 1959 Шубников G'321 и семиконтинуумы 1959 Роман G'321 как G'432 1960 Новацкий G'20, G'320 1961 Неронова, Белов G'0, G'10, G'21, G'31, G'32   Шубников 21 предельная G'30 1962 Пабст G'321   Шубников G'3210, G'321   Белов, Кунцевич, Неронова G'321   Роман G'321 1963 Палистрант, Заморзаев G'32 1964 Палистрант, Заморзаев G'1, G'21, G'321  1965 Палистрант G'210, G'320 и повторил G'210, G'3210, G'20   Галярский, Заморзаев G'31  1966 Копцик G'30, G'3 предельные G'30 1967 Неронова Классификация всех групп 1971 Роман G'31 и некристаллографические