Страница 3 из 15
Газообмен в легких обеспечивается тремя механизмами: вентиляцией альвеол, диффузией газов через альвеолокапиллярную мембрану и кровотоком в легочных капиллярах.
Вентиляция легких происходит благодаря работе дыхательных мышц (диафрагмы, межреберных и др.) и изменению объема легких с продвижением по воздухоносным путям дыхательного газа: на вдохе от атмосферы до альвеол и обратно на выдохе. Воздухоносные пути (ВП) подразделяют на верхние (полость носа, носовая и ротовая часть глотки) и нижние (гортань, трахея, бронхи, включая внутрилегочные разветвления бронхов). В носу, во рту и в глотке вдыхаемый воздух увлажняется и согревается. Во время вдоха воздух поступает в легкие сначала по механизму объемного потока (в первых 16 разветвлениях, до конечных бронхиол), а затем путем диффузии газов в переходной и дыхательной зонах (17 – 23 генерации ВП) – в дыхательные бронхиолы, альвеолярные ходы, альвеолярные мешочки до альвеол, объединенных под названием ацинусов или респиронов (рис. 1.2).
Рис. 1.2. Схема воздухоносных путей человека по Е. R. Weibel (1963)
Эпителий, выстилающий внутреннюю поверхность альвеолы, состоит из плоских выстилающих клеток (I тип), занимающих до 95 % площади альвеолярной поверхности, и секреторных (II тип) продуцирующих и секретирующих сурфактант, состоящих из протеинов и фосфолипидов. Он распределяется по альвеолярной поверхности и снижает поверхностное натяжение. Это предотвращает спадение альвеол и образование ателектазов. В зоне альвеол базальные мембраны эпителия и эндотелия создают сверхтонкий барьер для обмена газов, а также воды и растворенных в ней веществ между плазмой и интерстициальным пространством.
Из общей емкости легких (5 л) бо́льшая часть (около 3 л) приходится на дыхательную зону, которая включает в себя около 300 млн альвеол, площадь которых 50 – 100 м2, а толщина – 0,5 мкм.
(!) Эффективность вентиляции зависит от объема альвеолярной вентиляции и характера ее распределения в легких (равномерности).
При каждом вдохе в легкие поступает у здорового взрослого человека около 500 мл воздуха (колебания дыхательного объема, VT = 360 – 670 мл). Через дыхательную зону проходит примерно на 150 мл воздуха меньше, потому что объем так называемого «мертвого пространства» (VD), где газообмен почти не осуществляется, составляет 2,2 мл/кг массы больного. Поэтому газообмен в легких будет определяться не минутным объемом дыхания ( = 5,6 – 8,1 л/мин в норме), а минутным объемом альвеолярной вентиляции, которая рассчитывается по формуле:
Объемальвеолярнойвентиляцииопределитьтрудно, поэтому в клинической практике чаще всего ограничиваются определением минутного объема дыхания с помощью волюмоспирометра и учитывают при этом частоту дыхания. При частом и поверхностном дыхании, когда резко возрастает объем физиологического мертвого пространства, при нормальном или даже увеличенном минутном объеме дыхания может быть снижен объем альвеоляр•ной вентиляции. Так,•например, при VT=300 мл и f = 20 мин– 1, составит 6 л/мин, а = 3 л/мин. Поэтому объем вентиляции лучше оценивать на основании определения содержания СО2 вконечной порции выдыхаемого воздуха.
Наиболее информативным показателем, характеризующим объем альвеолярной вентиляции, является концентрация (парциальное давление) углекислого газа в конечно-выдыхаемом воздухе – FETCO2 (PETCO2).
При отсутствии нарушения вентиляции (снижения или увеличения объема альвеолярной вентиляции) PETCO2 почти равно парциальному давлению углекислого газа в альвеолярном воздухе (PАCO2), которое лишь на 1 мм рт. ст. меньше, чем парциальное давление CO2 в артериальной крови (PаCO2). Однако при нарушении вентиляции между ними может быть существенная разница.
При нормальной альвеолярной вентиляции в условиях спонтанного дыхания организм поддерживает постоянство состава альвеолярного воздуха, поддерживая парциальное давление O2 в альвеолярном воздухе (РАО2) на уровне 90 – 110 мм рт. ст., а РЕТСО2 – 34 – 44 мм рт. ст. При изменении объема вентиляции РЕТСО2 изменяется быстрее, чем РаСО2. При быстром увеличении объема вентиляции (например, во время искусственной вентиляции лeгких) РАСО2 уменьшается гораздо быстрее, чем в крови. В норме артерио-альвеолярная разность парциального давления СО2 – (а–А)рСО2 составляет около 1 мм рт. ст. При гипервентиляции она увеличивается, а при быстро нарастающей гиповентиляции может иметь отрицательное значение.
FETCO2 (PETCO2) можно легко и быстро определить по капнограмме (рис. 1.3) с помощью капнографа. В норме FETCO2 = = 4,9 – 6,4 об.% (PETCO2 = 34 – 44 мм рт. ст.). Гипервентиляция уменьшает величину этого показателя, вызывает гипокапнию (FETCO2 < 4,9 об.%, PETCO2 < 34 мм рт. ст.), что может привести к развитию дыхательного алкалоза. Гиповентиляция, наоборот, вызывает гиперкапнию (FETCO2 > 6,4 об.%, PETCO2 > 44 мм рт. ст.) с развитием дыхательного ацидоза.
В поддержании эффективной вентиляции имеет большое значение ее равномерность. Вентиляция всех участков здоровых легких неодинакова. Основания легких, имея меньший исходный альвеолярный объем и большую растяжимость, при вдохе расширяются сильнее, чем верхушки. Поэтому нижние отделы легких вентилируются лучше верхних. Однако в норме неравномерность вентиляции легких незначительная. При патологии (бронхоспазм, нарушение региональной проходимости дыхательных путей) неравномерность вентиляции резко возрастает и при дыхании воздухом даже в условиях избыточной минутной вентиляции легких могут возникнуть нарушения оксигенации в легких, развиться гипоксемия.
Рис. 1.3. Капнограммы в норме и при различных патологических состояниях
Наиболее информативным показателем, характеризующим степень неравномерности вентиляции, является угол наклона альвеолярного плато капнограммы (СО2).
В норме ∠ СО2 составляет 3 – 7°, при астматическом статусе он может возрастать до 60° и более, так как резко нарушается равномерность вентиляции.
Таким образом, капнография позволяет быстро оценивать эффективность вентиляции, ее объем и равномерность, она является одним из методов стандарта минимального мониторинга во время анестезии и интенсивной терапии.
Кровоток в легких (Qc) в значительной степени отличается от кровотока в большом круге кровообращения:
• среднее давление в легочной артерии (15 мм рт. ст.) в 6 раз ниже, чем в артериях большого круга (100 мм рт. ст.);