Добавить в цитаты Настройки чтения

Страница 5 из 10

Второй тонкий вопрос – это истинность любого общего высказывания об элементах пустого множества (задачи 3.3–3.5 и 3.12). В школьной программе он игнорируется из-за несоответствия формального и житейского подхода к нему. Это приводит к неоднозначному толкованию условия некоторых задач (в частности, с параметром). Несложная задача 3.11 служит для повторения материала предыдущего занятия, а ее сюжет связан с гораздо более сложной следующей задачей-парадоксом 3.12.

Задача 3.13 позволяет эффектно завершить занятие. Она не имеет отношения к его теме, содержательно в ней развивается наиболее сложная идея первого занятия, а сюжетно – линия Деда Мороза. Можно в начале занятия не выдавать ее вместе с другими задачами, а дать «на сладкое» двум кружковцам, решившим другие задачи быстрее остальных. В задаче 3.12 обсуждается существование Деда Мороза. После этого самое время выпустить «на сцену» двух «артистов», которые неопровержимо докажут существование Деда Мороза!

Однажды Танечка и Ванечка услышали про Африку. И подумали, что в Африке водятся большие звери. Они дождались, когда мама с папой уснули, и убежали в Африку. Там Танечка успела увидеть только мартышку, а Ванечка бегемота. Тут как раз проснулись родители. Они обо всем догадались и забрали детей из Африки домой. На обратном пути дети заспорили.

– Правда, африканские звери большие? Я же сам видел! – спросил у папы Ваня.

– Нет, африканские звери маленькие, – не соглашалась Таня. – Я тоже сама видела. Вот скажи, папа, кто из нас прав?

– А это смотря как понимать вопрос, – начал папа. – Можно так: «Верно ли, что НЕКОТОРЫЕ африканские звери большие?»

– Да, верно! – торжествующе посмотрел на сестру Ваня. – Например, бегемот, которого я видел.

– Молодец, – похвалил папа. – Для ответа «Да» на вопрос про некоторых достаточно привести один пример.

– А если бы я не увидел бегемота? – забеспокоился Ваня. – Тогда из-за Танькиной мартышки ответ был бы «Нет, неправда»?

– Ну что ты! – успокоил его папа. – Размеры животных не зависят от того, видишь ли ты их. Даже если встретишь тысячу маленьких мартышек, отвечать «Нет» еще рано. Понимаешь почему?

– Понимаю, – сказал Ваня. – Бегемот или другой пример мог просто хорошо спрятаться!

– Поэтому ответ «Нет» на вопрос про некоторых объяснить бывает непросто, – вздохнула мама. – Для этого требуется настоящее доказательство.

А папа продолжил:

– Но ваш вопрос можно понять и совсем по-другому: «Верно ли, что ВСЕ африканские звери большие?».

– Откуда мы знаем? Мы же не успели увидеть всех зверей, – начал было Ваня, но Танечка его перебила:

– А вот и знаем! Не все. Ведь я же видела маленькую мартышку!

– Хорошо, что ты ее увидела, – похвалил папа. – Твоя мартышка – прекрасный…

– Пример! – перебила Танечка.

– Почти, – согласился папа. – Только пример, который помогает опровергнуть предположение, называется КОНТРПРИМЕР. И для ответа «Нет» на вопрос про всех достаточно привести один контрпример.

– А если ответ был бы «Да»? – хором спросили дети. – Как называется нужный пример?

– Никак не называется, – ответил папа. – Потому что его нет. Никакими примерами не убедишь, что где-нибудь ВСЕ звери большие.

– Поэтому ответ «Да» на вопрос про всех объяснить бывает непросто, – вздохнула мама. – Для этого требуется настоящее доказательство.

– А если ты уже тысячу зверей встретил и все они большие? – с надеждой спросил Ванечка.

– Ну и что! – победно вскричала Танечка. – Хоть миллион! Моя маленькая мартышка тем более могла спрятаться! Еще получше твоего бегемота!

Пока Танечка и Ванечка выясняют, кто лучше прячется, опишем с помощью таблицы два типа утверждений:





Там, где стоят знаки вопроса, общего рецепта нет, для каждой задачи приходится искать свое доказательство.

Задача 3.1. Определите, какие из утверждений верны. Где можно, подтвердите свой ответ примером (контрпримером). В остальных случаях обоснуйте его по-другому.

1. Все нечетные числа простые.

2. Все простые числа нечетные.

3. Некоторые нечетные числа простые.

4. Некоторые простые числа нечетные.

5. Все четные числа составные.

6. Все числа вида р + 7, где р – простое, являются составными.

Ответ. Верны утверждения 3, 4, 6.

Решение. Привести контрпримеры к утверждениям 1, 2, 5 и примеры к утверждениям 3, 4 предоставляем читателю. Для доказательства утверждения 6 рассмотрим два случая. Если р = 2, то число р + 7 = 9 – составное. Если простое число p ≠ 2, то оно нечетное, поэтому р + 7 – четное и больше 2, следовательно, составное.

Задача 3.2. Верно ли высказывание: «Любое нечетное число, большее 5, можно представить в виде суммы трех простых чисел»?

Обсуждение. На первый взгляд это утверждение мало отличается от сформулированных в предыдущем задании. Попробуем рассуждать так же. Для начала поищем контрпример (как в пунктах 1, 2 и 5 предыдущей задачи): 7 = 2 + 2 +3, 9 = 3 + 3 +3, 11 = 3 + 3 + 5 и т. д. Не получается? Что ж, попытаемся доказать, что утверждение верно (как в пункте 6). Тоже не получается? Не огорчайтесь, вы не одиноки! Еще в 1742 году Кристиан Гольдбах предложил эту задачу Леонарду Эйлеру. Позже она получила название тернарной проблемы Гольдбаха. Ей занимались многие математики, но лишь в 2013 году американский математик Харальд Хельфготт окончательно доказал, что гипотеза Гольдбаха верна. А бинарная проблема Гольбаха, упоминавшаяся на первом занятии, не решена до сих пор.

Задача 3.3*. Верно ли утверждение: «Все дожившие до наших дней тираннозавры умеют вышивать крестиком»?

Обсуждение. Утверждение звучит странно и на первый взгляд кажется неверным. Что ж, попробуем его опровергнуть. Для этого нужно привести контрпример – то есть дожившего до наших дней тираннозавра, не умеющего вышивать крестиком. Поскольку его не существует, то утверждение верно.

Ответ. Да, верно.

Комментарий 1. Сравним две последние задачи. Поиск контрпримера в обеих оказался затруднительным. Но эти затруднения разного характера. Контрпример к проблеме Гольдбаха мы найти не могли, но не были уверены, что его не сможет найти кто-то более умный или терпеливый. Поэтому вывода сделать не могли (а Харальд Хельфготт смог!). А вот живого тираннозавра не только мы с вами не можем найти, но и уверены, что никто другой не найдет.

Комментарий 2. Аналогично можно верно высказываться не только о живых тираннозаврах, но вообще обо всем, чего на самом деле нет. Например, все кролики, проглотившие удава, остались голодными. (Не верите? Тогда найдите кролика, проглотившего удава, и поинтересуйтесь, сыт ли он.) А все четные числа, оканчивающиеся на 5, оканчиваются на 7. С точки зрения формальной логики любое высказывание обо всех элементах пустого множества верно, потому что к нему не может быть приведен контрпример.

Есть и другая причина считать верными высказывания о современных тираннозаврах и прочих несуществующих объектах. Начнем с несомненно истинного высказывания «Все числа, кратные 12, четны». Дополнив условие, мы получим следствие из него, которое тоже должно быть истинным. Например, «Все трехзначные числа, кратные 12, четны». Или «Всякое число с суммой цифр 30, кратное 12, четно». Или «Всякое число с суммой цифр 100, кратное 12, четно». А теперь заметим, что числа с суммой цифр 100, кратные 12, – такие же несуществующие объекты, как и современные тираннозавры.

Задача 3.4*. Рассмотрим два высказывания:

А: Некоторым Мишиным одноклассникам 12 лет.

Б: Всем Мишиным одноклассникам 12 лет.

Можно ли, ничего не зная про Мишу, утверждать, что:

1) если верно А, то верно и Б;

2) если верно Б, то верно и А?