Страница 4 из 10
Итак, чтобы построить отрицание к высказыванию про всех, надо заменить:
• «всех» на «некоторых»;
• свойство на противоположное (например, «ядовитое» на «съедобное»).
Задача 2.6. Лжец сказал: «В этой корзине некоторые грибы ядовитые». Что можно узнать из этого высказывания?
Решение. Если бы в корзине был хотя бы один ядовитый гриб, лжец был бы прав. Поэтому ядовитых грибов в корзине нет. Другими словами, все грибы в этой корзине съедобны.
Итак, чтобы построить отрицание к высказыванию про некоторых, надо заменить:
• «некоторых» на «всех»;
• свойство на противоположное (например, «ядовитое» на «съедобное»).
Задача 2.7. Дано утверждение: «Все малышки хорошо поют». Незнайка сформулировал к нему отрицание: «Все малышки поют отвратительно».
1) Как с помощью закона исключенного третьего убедить Незнайку, что он ошибся?
2) Сформулируйте отрицание правильно.
Решение. 1) По закону исключенного третьего верно ровно одно из двух: либо утверждение, либо его отрицание. Найдя двух малышек, одна из которых поет хорошо, а вторая плохо, мы убедимся, что неверно ни само утверждение, ни его «отрицание», придуманное Незнайкой.
2) «Существует хотя бы одна малышка, которая поет плохо». Или «Некоторые малышки поют плохо».
Задача 2.8. Постройте отрицания к каждому утверждению, не используя частицу «не». Где сможете, укажите, что верно: утверждение или его отрицание. Где сможете, обоснуйте свое мнение примером или контрпримером.
1) На Земле существует хотя бы одна гора выше 10000 м над уровнем моря.
2) Существует хотя бы один вулкан с высотой более 10000 м относительно своего основания.
3) Любой жук помещается в спичечном коробке.
4) Некоторые горные реки быстрые.
5) Бутерброд всегда падает маслом вниз.
Ответ. 1) Верно отрицание: любая гора на Земле не выше 10000 м над уровнем моря. Обосновать утверждение такого типа примером нельзя, знание высоты Эвереста (8848 м) не доказывает, что более высоких гор нет.
2) Верно утверждение. Пример – вулкан Мауна-Кеа на Гавайских островах с высотой 10203 м от основания (и «всего» 4205 м над уровнем моря). Последний раз этот вулкан извергался несколько тысяч лет назад. А самый высокий вулкан Солнечной системы – гора Олимп на Марсе имеет высоту 21,2 км от основания.
3) Верно отрицание: существует хотя бы один жук, не помещающийся в спичечном коробке. Пример – жук-голиаф из подсемейства бронзовки, обитающий в Африке. Длина его тела достигает 11 см.
4) Верно утверждение. Примером служит любая горная река.
5) Не стоит относиться к этой задаче всерьез. Для точного построения отрицания потребуется сначала строго определить, что такое бутерброд. Например, может ли он вообще не содержать масла? Мы предполагаем, что при любом определении верным окажется отрицание, но для приведения примера может потребоваться тренировка.
Задачи для самостоятельного решения
Задача 2.9. Рассмотрим два утверждения:
А: В этой корзине все грибы съедобные.
Б: В этой корзине есть хотя бы один съедобный гриб.
Могут ли быть верными: 1) оба утверждения; 2) ровно одно из них; 3) ни одного?
Задача 2.10. Является ли высказывание «В этой корзине некоторые грибы съедобные» отрицанием высказывания «В этой корзине некоторые грибы ядовитые»?
Задача 2.11. Нарисуйте с помощью кругов Эйлера иллюстрацию к каждому высказыванию. Есть ли среди иллюстраций одинаковые? Одинаков ли смысл соответствующих высказываний?
1. Все хоббиты живут в норах.
2. Все жители нор – хоббиты.
3. Некоторые кошки серые.
4. Некоторые серые существа – кошки.
Задача 2.12. Когда учительница ругала Дениса за плохой почерк, он сказал: «У всех великих людей был плохой почерк, значит, я великий человек». Прав ли он?
Задача 2.13. Шерлок Холмс допросил Зайца, Волка и Лису по делу о съедении Колобка. Подозреваемые заявили:
Заяц: «Хотя бы один из нас съел Колобка».
Волк: «Хотя бы один из нас не ел Колобка».
Лиса: «Хотя бы один из нас сказал правду».
Как известно, Колобка съела Лиса. Кто сказал правду, а кто солгал?
Задача 2.14. Комиссия посетила больницу и составила отчет, в котором не было ни одного правдивого утверждения.
«Все врачи имеют достаточный опыт. Некоторые врачи никогда еще не ставили неправильного диагноза. Никто из врачей не опаздывает на работу. Все пациенты довольны лечением. Ни один из них не жалуется на бытовые условия. Некоторые пациенты выздоравливают за один день».
Напишите, как выглядел бы честный отчет.
Задача 2.15. В комнате собрались несколько жителей острова рыцарей и лжецов. Трое из них сказали следующее:
– Нас тут не больше трех человек. Все мы лжецы.
– Нас тут не больше четырех человек. Не все мы лжецы.
– Нас тут пятеро. Лжецов среди нас не меньше трех.
Сколько в комнате человек и сколько из них лжецов?
Задача 2.16. Предположим, что справедливы следующие утверждения:
• Среди людей, имеющих телевизоры, не все являются малярами.
• Люди, каждый день купающиеся в бассейне, но не являющиеся малярами, не имеют телевизоров.
Следует ли отсюда, что не все владельцы телевизоров каждый день купаются в бассейне?
Занятие 3
Вдоль по Африке, или Примеры для некоторых и контрпримеры для всех
Школьники часто начинают решение задачи с поиска подходящего примера. Но тут встают три вопроса. Как такой пример подобрать? В каких случаях достаточно привести один пример для полного решения задачи? Что делать в остальных случаях? На этом занятии мы постараемся научиться отвечать на самый простой вопрос, но от этого не менее важный: на второй. Умение отличать решенную задачу от нерешенной – основа математической культуры. Отвечать на первый вопрос помогут другие выпуски нашей серии, а на третий – только годы занятий.
При составлении этого занятия мы вновь постарались учесть интересы разнородного по составу кружка. Вопрос применимости примеров и контрпримеров актуален прежде всего для начинающих, сложность задач для самостоятельного решения на приведение примера разнообразна, а рассуждения про пустое множество и парадоксы про Деда Мороза достаточно сложны. Чисто логические вопросы можно разбавить конструктивами по вкусу.
Во введении обсуждается применимость примеров (в том числе контрпримеров) к доказательству и опровержению частных и общих высказываний. Истинность таких высказываний предлагается определить и в большинстве задач. Но мы сознательно нарушили чистоту жанра, включив в занятие задачи 3.6 и 3.7 с вопросом «можно или нельзя?», в которых фактически требуется определить, что верно: частное высказывание или его отрицание.
Надеемся, что пяти- и шестиклассникам будет интересно разыграть сценку с Танечкой и Ванечкой в начале занятия. Текст четырем «артистам» стоит выдать заранее, но учить его наизусть незачем, пусть подглядывают в шпаргалки. Таблицу рекомендуем изобразить на доске, можно с сокращениями.
Более опытных кружковцев могут заинтересовать два сюжета. Первый связан с гипотезами Гольдбаха (задача 3.2). Это уникальный случай, когда формулировка совсем недавнего выдающегося математического достижения понятна школьнику. Участники кружка могут совместными усилиями проверить гипотезу Гольдбаха для чисел из первой сотни (если каждому поручить свой отрезок числового ряда), осознать необходимость доказательства, а затем узнать историю проблемы и вместе порадоваться успеху Хельфготта.