Страница 4 из 8
Возможно, самую понятную параллель можно провести в социально-политической сфере. Как утверждает пословица, «враг моего врага — мой друг». Общеизвестно, что понятия вроде «друг моего врага», «враг моего друга» и тому подобные можно подставить в виде треугольника отношений[8].
В углы треугольника помещают людей, компании или страны, а соединяющие их стороны показывают отношения между ними, которые могут быть как позитивными, или дружественными (обычно отображаются сплошными линиями), так и негативными, или враждебными (отображаются пунктирными линиями).
Социологи строят треугольники, подобные треугольнику слева, то есть считая отношения между объектами позитивными, так как разумно любить друзей ваших друзей. Точно так же треугольник справа, с двумя негативными и одной позитивной связью, считается сбалансированным, потому что такая комбинация не вызывает разногласий, даже несмотря на две стороны с негативными связями, поскольку ничто так не цементирует дружбу, как ненависть к одному и тому же человеку.
Конечно, треугольники могут быть выведены из состояния баланса. Это происходит в ситуации, когда есть три врага, причём двое из них относятся друг к другу менее враждебно и готовы объединиться, чтобы напасть на третьего.
Ещё менее сбалансированным будет треугольник с единственной негативной связью. Например, предположим, что Кэрол хорошо относится и к Элис, и к Бобу, но Боб и Элис не любят друг друга. Возможно, они когда-то встречались и пережили тяжёлое расставание, и теперь говорят друг о друге гадости лояльной к обоим Кэрол. Это создаёт психологическое напряжение между всеми тремя. Чтобы восстановить баланс, либо Элис и Боб должны урегулировать свои отношения, либо Кэрол должна принять чью-то сторону.
Во всех этих случаях логика баланса соответствует логике умножения. В сбалансированном треугольнике знак произведения двух любых сторон, положительный или отрицательный, всегда совпадает со знаком третьей стороны. В несбалансированном треугольнике это правило нарушается.
Не будем касаться вопросов о правдоподобии приведённых моделей, ибо здесь возникают интересные вопросы с чисто математическим привкусом. Например, в связной сети, где все друг друга знают, какое самое устойчивое состояние? Прежде всего это нирвана доброжелательности, где все отношения позитивные, а все треугольники в пределах сети сбалансированы. Однако существуют и другие устойчивые состояния. Например, устойчивое к конфликтам состояние, когда сеть раскололась на два враждебных лагеря (произвольных по величине и составу). Все члены одного лагеря хорошо относятся друг к другу, но враждебны к представителям другого лагеря. (Ничего не напоминает?) Возможно, ещё более удивительно то, что эти полярные состояния являются единственно возможными столь же устойчивыми состояниями, как нирвана[9]. В частности, ни у какого трёхстороннего раскола не может быть уравновешенных треугольников.
Учёные использовали этот метод для анализа союзов, сложившихся при подготовке к Первой мировой войне[10]. Диаграммы, представленные ниже, показывают союзы между основными державами, участвовавшими в ней: Великобританией, Францией, Россией, Италией, Германией и Австро-Венгрией между 1872 и 1907 гг.
Первые пять конфигураций были несбалансированными, потому что каждая из них содержала по крайней мере один несбалансированный треугольник. Возникающие в результате разногласия подталкивали эти страны к изменению конфигурации, тем самым вызывая реверберацию в других частях сети. На последнем этапе Европа раскололась на два непримиримых антагонистских блока, придя к общему балансу, но оказавшись на грани войны.
Однако это не значит, что на основании данной теории можно делать прогнозы. Это не так. Подобный подход не позволяет объяснить все тонкости изменений в геополитике. Но некоторые из наблюдаемых нами явлений происходят в соответствии именно с примитивной логикой «враг моего врага» и отлично подпадают под умножение отрицательных чисел. Отделяя важное от незначительного, арифметика отрицательных чисел может помочь нам отыскать настоящие загадки.
4. Коммутативность: перемена мест сомножителей
Приблизительно каждые десять лет появляются новые методы преподавания математики, что лишний раз заставляет родителей почувствовать себя отставшими от жизни. Ещё в 60-е годы прошлого века мои родители были в шоке оттого, что не могли мне помочь выполнить простое домашнее задание — они никогда не слышали о троичной системе счисления и диаграммах Эйлера-Венна.
Сегодня ситуация не изменилась. «Папа, ты можешь показать мне, как делать эти примеры на умножение?» «Конечно могу», — самонадеянно заявил я, пока не довёл дочь до истерики. «Нет, папа, сейчас это делают не так! Это устаревший способ! Разве ты не знаешь умножения методом решётки? Нет? Ну а как насчёт частичных произведений?»
Эта унизительная ситуация побудила меня пересмотреть процесс умножения с самого начала[11]. И оно, как только вы вникнете в него глубже, действительно оказывается очень тонкой вещью.
Возьмите, например, терминологию. Равно ли трижды семь сумме трёх по семь? Или сумме семи по три?
В некоторых культурах язык менее неоднозначен. Один мой друг из Белиза привык читать таблицу умножения так: «Семь один раз — это семь, семь дважды — четырнадцать, семь трижды — двадцать один» и так далее. Такая формулировка позволяет понять, что первое число это множимое, а второе — множитель. Аналогичная игра слов есть и в бессмертных стихах песни Лайонела Ричи[12] «Она однажды, дважды, трижды леди». (Слова «Она леди три раза» никогда не стали бы хитом.)
Может быть, вся эта суета вокруг семантики кажется вам глупой, так как порядок, в котором числа перемножаются, не имеет никакого значения, то есть в любом случае 7∙3=3∙7. Хорошо, но тут напрашивается вопрос, на котором я хотел бы остановиться подробнее. Является ли этот переместительный (коммутативный) закон умножения a∙b=b∙a действительно таким очевидным? Помню, меня ещё в детстве он удивил, возможно, и вас тоже.
Чтобы привнести немного магии, представьте себе, что вы не знаете, чему равно 7∙3, и поэтому складываете семёрки: 7, 14, 21. Теперь поменяйте местами сомножители и складывайте тройки, получается 3, 6, 9… Чувствуете ли вы всё нарастающее недоумение? До сих пор ни одно из чисел в этих перечнях не совпало, но пройдём дальше… 12, 15, 18, и затем — ах! — 21.
Я хочу сказать, что если вы считаете, что умножение соответствует многократному суммированию определённого числа (другими словами, многократному сложению), то коммутативный закон не совсем понятен. Но всё проясняется, если представить умножение визуально. Допустим, 7∙3 — это число точек в прямоугольной матрице с семью строками и тремя столбцами.
Если поставить матрицу набок, она превращается в матрицу, состоящую из трёх строк и семи столбцов. Поскольку сама картинка при вращении не изменяется (то есть количество точек сохраняется), то похоже на то, что действительно 7∙3=3∙7.
Тем не менее, как ни странно, во многих реальных ситуациях, особенно когда дело касается денег, люди, кажется, забывают о коммутативном законе умножения. Позвольте привести два примера.
8
Теория баланса впервые была предложена социальным психологом Фрицем Хайдером в 1946 году и с тех пор разрабатывалась и применялась теоретиками социальных сетей, политологами, антропологами, математиками и физиками. Её исходные положения даны в F. Heider, Attitudes and cognitive organization, Journal of Psychology, Vol. 21 (1946), pp. 107–112, и F. Heider, The Psychology of Interpersonal Relations (John Wiley and Sons, 1958). Обзор по теории баланса с точки зрения социальных сетей см. S. Wasserman and K. Faust, Social Network Analysis (Cambridge University Press, 1994), chapter 6.
9
Теорема, из которой следует, что сбалансированное состояние в полностью связной сети должно быть либо в виде одной нирваны для всех друзей, либо в виде двух взаимно антагонистических группировок, впервые была доказана в D. Cartwright and F. Harary, Structural balance: A generalization of Heider’s theory, Psychological Review, Vol. 63 (1956), pp. 277–293. Очень легко читаемая версия доказательства и простое введение в математику теории баланса дано двумя моими коллегами из Корнельского университета в работе D. Easley and J. Kleinberg, Networks, Crowds, and Markets (Cambridge University Press, 2010).
10
Примеры и графические изображения альянсов до Первой мировой войны взяты из T. Antal, P. L. Krapivsky and S. Redner, Social balance on networks: The dynamics of friendship and enmity, Physica D, Vol. 224 (2006), pp. 130–136, доступной по адресу http://arxiv.org/abs/physics/0605183
Эта статья, написанная тремя физиками, распространяет теорию баланса на динамические структуры, тем самым расширяя её за пределы ранних статических подходов. Исторические подробности европейских союзов и альянсов приведены в W. L. Langer, European Alliances and Alignments, 1871–1890, 2nd edition (Knopf, 1956) и B. E. Schmitt, Triple Alliance and Triple Entente (Henry Holt and Company, 1934).
11
Кит Девлин написал провокационную серию очерков о природе умножения: что это такое, что в нём не так и почему определённые виды мышления более ценны и надёжны в процессе умножения, чем другие. Он рассматривает умножение как масштабирование, не сводя его к процессу суммирования, и показывает, что эти два понятия (умножение как масштабирование и умножение как суммирование) существенно разнятся в реальных условиях. См. его январскую (2011 года) статью What exactly is multiplication? на http://archive.is/qCkK, а также три более ранних 2008 года:
It ain’t no repeated addition (http://www.maa.org/devlin/devlin_06_08.html),
It’s still not repeated addition (http://www.maa.org/devlin/devlin_0708_08.html)
и
Multiplication and those pesky British spellings (http://www.maa.org/devlin/devlin_09_08.html).
Эти статьи активно обсуждались в среде блогеров, особенно среди учителей.
12
Американский исполнитель поп-музыки, снискавший мировую славу в 1980-х годах. Прим. ред.