Добавить в цитаты Настройки чтения

Страница 32 из 51



«…Ваши спектральные исследования принадлежат к разряду самого прекрасного, что я пережил в физике».

Однако таинственным оставалось, почему микромир устроен так, что периодические движения в атоме — вращения и колебания — обладают странным свойством квантуемости. Именно в том письме к Зоммерфельду содержалось уже знакомое нам восклицание Эйнштейна в духе обычной для него пленительной полушутливости: «Если бы я только знал, какие винтики использует при этом господь бог!»

Природа (эйнштейновский господь бог) молчала. Она всем и каждому открыто демонстрировала свои законы, но никому не помогала их понять.

6

Среди тонкостей тонкой структуры спектров была одна, которая все–таки не поддавалась расшифровке. Ее издавна окрестили аномальным эффектом Зеемана. Даже квантовых чисел Зоммерфельда было явно недостаточно, чтобы описать происходящее.

Случалось так, что в магнитном поле желтая линия натрия, например, расщеплялась на четыре, на шесть близких линий. В атоме бесспорно скрывались еще какие–то — пока неучтенные! — квантовые возможности: занумерованных тремя числами энергетических ступенек в атоме не хватало для верной картины.

Год за годом решение не давалось одареннейшим теоретикам. Один из них — всеми почитавшийся гением — впоследствии вспоминал, как в 1923 году он, работая у Бора в институте, сделался мучеником этой проблемы:

«…Коллега, встретивший меня, когда я бесцельно бродил по прекрасным улицам Копенгагена, дружески сказал: «Вы выглядите очень несчастным». На что я пылко ответил: «Как может выглядеть человек счастливым, если он думает об аномальном эффекте Зеемана?»

Пылкость ответа объяснялась молодостью несчастливца: он был ровесником века — ему исполнилось тогда всего двадцать три. Звали его Вольфганг Паули.

Он отличался редкостной самонадеянностью. К счастью, она была прямо пропорциональна его редкостным способностям. Когда ему было девятнадцать, он однажды после эйнштейновской лекции в Мюнхене объявил вслух: «Знаете ли, то, что нам сейчас сообщил господин Эйнштейн, вовсе не так уж глупо…» Но еще большей известностью, чем эта незабвенная фраза, пользовалась его большая статья о теории относительности. Эйнштейн говорил, что начал тоньше понимать собственную теории после работы юного Паули.

Так вот, той самой весной 25–го года, когда Эрвин Шредингер и Вернер Гейзенберг вынашивали свои варианты механики микромира, Вольфганг Паули решился на отчаянное признание в письме к одному, еще более юному, теоретику:

«…Физика слишком трудна для меня, и я жалею, что не сделался комиком в кино или кем–нибудь в этом роде, лишь бы никогда и ничего не слышать больше о физике».

Психологически это тем неожиданней, что как раз той же весной он опубликовал историческую работу, содержавшую ключ к решению истомившей его загадки Зеемана. Десятилетие спустя после Зоммерфельда Паули нашел, наконец, новое квантовое число.

Он открыл в микромире еще одну черту квантовой прерывистости. Он догадался, что она, эта черта, свойственна не атому в целом, а каждому электрону в атоме. И он назвал ее «двузначностью электрона». Абстрактно. Без всякой модели. Без каких–либо попыток изобразить такую двузначность.

Ему важно было лишь одно: квантовые возможности микромира по меньшей мере удваивались… Лестница разрешенных уровней энергии в атоме еще усложнилась… Аномальное расщепление спектральных линий поддалось правильному описанию… А заодно и многое другое стало доступно теоретическому оправданию.



Так не открыл ли Паули новый тип вращения электрона? Это ведь казалось необходимым для квантования. Но мысль о зримом — классическом — образе для любого квантового явления была глубоко враждебна Паули. Когда Вильям Брэгг–старший пошутил, что модель Бора предложила физикам три дня в неделю следовать классическим законам, а три дня — квантовым, он хотел сказать, что логически это недопустимо. Никто не сознавал этого лучше, чем сам Бор и его ассистенты. В их числе — Паули. Но как перейти на полную квантовую неделю, никто не знал.

Не потому ли, несмотря на собственный громадный успех, достигнутый той весной, Паули все–таки написал юному коллеге, что завидует участи комика в кино? Пока он требовал изгнания из квантовой физики классических образов. Его острого критического языка побаивались другие. Он бывал неумолим. Но, как это видно, и к себе тоже.

А юный коллега, которому он адресовался тогда, — это был двадцатилетний американец Ральф Крониг, — как раз только что принял грех на душу: узнав о «двузначности электрона», он сразу же предложил для этой двузначности полуклассическую модель.

Он нашел для электрона еще одну форму вращения: на сей раз не вокруг атомного ядра, а вокруг собственной оси. Так вращаются и планеты. А провозглашенная Паули двузначность имела у Кронига тот смысл, что и это вращение квантуется: если засечь какое–нибудь положение оси электрона, то вторым возможным положением будет только прямо противоположное. Остальные запрещены. Электрон похож на странный компас, чья магнитная стрелка умеет показывать лишь юг и север, или запад и восток, или северо–запад и юго–восток… Вот и двузначность! Проделав нужные вычисления, Крониг тотчас получил верную формулу для раздвоения спектральных линий.

Однако Паули сказал, что все это — «остроумная выдумка», не более того. Модель Кронига он отверг. А потом и Бор отверг. И другие. Завязался драматический сюжет — один из самых известных в нашей хорошей истории.

Ральф Крониг, слишком юный и слишком неопытный, сдался. Он не осмелился послать свою работу в печать. Среди неодолимых возражений против его модели было очень понятное нам.

Если ось вращения электрона походила на магнитную стрелку компаса, то сам он походил на быстро крутящийся волчок. В этом еще не было беды. Но получалось, что он должен крутиться чудовищно быстро. Так быстро, что участочкам на периферии электрона — волчка с радиусом порядка 10–13см — приходилось описывать круги со сверхсветовой скоростью. А этого не дозволяла теория относительности.

Тем не менее в том же 1925 году к модели вращающегося электрона пришли, кажется, вполне независимо от Кронига, два столь же молодых голландских теоретика — С. Гоудсмит и Г. Уленбек. Они работали в Лейдене.

Там уже больше десятилетия занимал кафедру постаревшего Лоренца замечательно человечный человек — видный теоретик Пауль Эренфест. Впрочем, у нас его, выходца из Вены, называли чаще Павлом Сигизмундовичем: еще до первой мировой войны он пять лет жил и работал в России. Сердечные отношения связывали его с академиком Иоффе и многими нашими физиками. Был он близким другом Эйнштейна и Бора. В истории квантовой революции, пожалуй, никто, включая даже Вольфганга Паули и Льва Ландау, не заслужил такой доброй славы «творческого критика», как Эренфест. Суть в том, что критика его всегда бывала не только проницательной, но и доброй.

Разумеется, взбудораженные своей идеей, молодые голландцы пошли к Эренфесту. Их не остановило то, в чем позднее признался Уленбек:

— …Наш энтузиазм в значительной мере остыл, когда мы обнаружили, что скорость вращения на поверхности электрона должна во много раз превышать скорость света!

Эренфест сказал, что «это либо очень важно, либо чепуха». Он повелел юнцам написать короткое письмо в научный журнал. Они послушались — сочувствие всегда ободряет. Но потом, уже передав профессору письмо, они, как и Крониг, погрузились в обезволивающие сомнения. Через тридцать лет, в 1955 году, принимая кафедру Лоренца — Эрейфеста, Уленбек вспоминал:

— Мы с Гоудсмитом почувствовали, что, быть может, лучше пока воздержаться от публикаций, но когда мы заговорили об этом с Эренфестом, он ответил: «Я уже давно отправил ваше письмо в печать. Вы оба достаточно молоды, чтобы позволить себе сделать глупость!»

В результате именно с их именами навсегда связалось введение в физику микромира нового понятия спин (буквально — «вращение»). Вместо бесплотной «двузначности электрона» оно стало названием четвертого квантового числа.