Добавить в цитаты Настройки чтения

Страница 29 из 479

Двигательная единица включает все мышечные волокна, иннервируемые одним мотонейроном. Любое мышечное волокно в норме получает нервное обеспечение только из одной концевой двигательной пластинки и потому только из одного мотонейрона. Мотонейрон определяет волокнистый тип всех мышечных волокон, которые он обеспечивает. В постуральных мышцах и мышцах конечностей одна двигательная единица обеспечивает от 300 до 1500 мышечных волокон. Чем меньше число волокон, которые контролируются индивидуальными мотонейронами мышц (более мелкие двигательные единицы), тем лучше двигательный контроль в этой мышце.

Когда тело клетки мотонейрона переднего рога спинного мозга начинает вырабатывать потенциал действия, этот потенциал передается вдоль нервного волокна (аксон) через каждое его древовидное разветвление специализированному нервному окончанию, которое участвует в формировании нейромышечного соединения (концевая двигательная пластинка) на каждом мышечном волокне. По прибытии к нервному окончанию электрический потенциал действия передается через синаптическую щель нервно-мышечного соединения в постсинаптическую мембрану мышечного волокна. Здесь «сообщение» снова становится потенциалом действия, который распространяется в обоих направлениях до концов мышечного волокна, вызывая тем самым его сокращение. При почти синхронном «включении» всех мышечных волокон, иннервируемых одним мотонейроном, вырабатывается потенциал действия двигательной единицы.

Одна такая двигательная единица в мышцах конечностей человека обычно ограничивается участком диаметром 5-10 мм [29]. Диаметр одной двигательной единицы, расположенной в двуглавой мышце плеча, может варьироваться от 2 до 15 мм. Это дает возможность переплетения волокон от 15–30 двигательных единиц. ЭМГ-исследования и изучение интенсивности расщепления гликогена показывают, что плотность мышечных волокон, обеспечиваемых одним нейроном, намного выше в центре территории, определяемой двигательной единицей, чем по ее периферии [29]. Два недавно проведенных исследования диаметра двигательных единиц жевательной мышцы показали, что средние величины составляют 8,8 ± 3,4 мм [185] и 3,7 ± 2,3 мм [267]; в последнем случае диапазон величины двигательной единицы колебался от 0,4 до 13,1 мм. Подробный трехразмерный анализ распределения волокон в пяти двигательных единицах передней большеберцовой мышцы кошек выявил заметные вариации в диаметре по всей длине двигательной единицы [222]. Таким образом, размер уплотненного мышечного пучка, если он образован только одной двигательной единицей, может в значительной степени варьироваться и более или менее четко очерчивать границы в однородной плотности мышечных волокон, расположенных внутри такой моторной единицы. Сходная вариабельность может быть следствием вовлечения отдельно взятых мышечных волокон нескольких переплетенных двигательных единиц.

Зона концевой двигательной пластинки

Двигательная пластинка представляет собой функционально-анатомическую структуру, обеспечивающую связь окончания нервного волокна мотонейрона с мышечным волокном непосредственно. Она состоит из синапса, где электрический сигнал, исходящий из нервного волокна, изменяется на химический мессенджер (ацетилхолин), который в свою очередь вызывает другой электрический сигнал в клеточной мембране (сарколемма) мышечного волокна.

Зона концевой двигательной пластинки является территорией, где происходит иннервация мышечных волокон. В настоящее время этот район называют двигательной точкой [153]. Клинически каждая двигательная точка определяется областью, где видимые или пальпируемые мышцы дают локальную судорожную реакцию в ответ на минимальное поверхностное раздражение электричеством (стимуляция). Первоначально двигательную точку ошибочно представляли как зону вхождения нерва в мышцы [4].

Местоположение концевых двигательных пластинок

Точное представление о местоположении концевых двигательных пластинок крайне важно для постановки правильного клинического диагноза и лечения миофасциальных триггерных точек. Если, как это часто бывает у бального, патофизиология триггерных точек тесно ассоциируется с концевыми пластинками, можно ожидать, что миофасциальные триггерные точки располагаются только там, где находятся концевые двигательные пластинки. Почти во всех скелетных мышцах концевые двигательные пластинки располагаются почти по середине каждого волокна, т. е. на середине расстояния между точками их прикрепления. Этот принцип, характеризующий мышцы человека, представлен схематически Coers и Woolf [44], одними из первых исследовавших концевые двигательные пластинки (рис. 2.8).

Рис. 2.8. Расположение концевых двигательных пластинок в скелетных мышцах различной структуры. Красные линии представляют мышечные волокна; черные точки показывают концевые двигательные пластинки этих волокон, а черные линии обозначают прикрепление волокон к апоневрозу. Концевые двигательные пластинки обнаруживаются в средней части каждого мышечного волокна.





а — линейные концевые двигательные пластинки, находящиеся в мышце с короткими волокнами, расположенные между параллельными апоневрозами, как это наблюдается в икроножной мышце;

б — петлеобразное расположение концевых пластинок в двуперистой мышце (например, m.flexor carpi radialis и m.palmaris longus;

в — синусоидное расположение концевых пластинок в мышечных волокнах средней части дельтовидной мышцы, характеризующихся сложной перистой конфигурацией.

(Из Coers С. Contribution a I’etude de la jonction neuromusculaire. II. Topographie zonale de I’i

Aquilonius и соавт. [5] представили результаты подробного анализа местонахождения концевых двигательных пластинок двуглавой мышцы и плеча, передней большеберцовой и портняжной мышц взрослого человека. Christensen [36] описал распределение срединных концевых двигательных пластинок у мертворожденного в следующих мышцах: мышце, противопоставляющей большой палец, плечелучевой, полусухожильной (два поперечных пучка концевых пластинок), двуглавой мышце плеча, тонкой (два определенных типа уплотнения мышечного волокна внутри каждой двигательной единицы), портняжной (разбросанные концевые пластинки), трехглавой мышце плеча, икроножной, передней большеберцовой, мышце, противопоставляющей V палец кисти, прямой мышце бедра, коротком разгибателе пальцев стоп, перстнещитовидной и дельтовидной.

Как было сказано выше, принцип используется вне зависимости от строения мышечных волокон. Для этой цели важно знать, как расположены мышечные волокна: это поможет понять, как расположены концевые пластинки внутри каждой мышцы и, следовательно, определить место, где следует искать триггерные точки. В мышце волокна могут располагаться следующим образом: параллельно, параллельно с сухожильными вставками, веретенообразно, веретенообразно с двумя брюшками. Мышцы также могут быть одноперистыми, двуперистыми, многоперистыми, обладать спиральным расположением волокон (рис. 2.9).

Рис. 2.9. Параллельное и веретенообразное расположение мышечных волокон обеспечивает большее изменение длины при затрате силы. Перистое строение обеспечивает большую силу при издержках в длине. Обратите внимание на то, что расположение мышечных волокон в каждой отдельной мышце обеспечивает почти равную длину всех составляющих ее мышечных волокон. На рис. 2.8 можно видеть расположение концевых двигательных пластинок в мышцах разной формы.