Добавить в цитаты Настройки чтения

Страница 5 из 17

А. Коротаев, Н. Комарова, Д. Халтурина [7], реставрируя модель М. Кремера с «мальтузианско-кузнецианским» уклоном, подгоняют свою «компактную» систему дифференциальных уравнений к желаемому результату. А именно: скорость роста численности населения мира пропорциональна квадрату этой численности. Константы Капицы К и τ в эту систему не входят, возвращена постоянная Фёрстера. Вся логика построена на рассуждениях вида А ~ В, А ~ С, следовательно, А ~ В·С. Исходные линейные зависимости считаются очевидными:

«Модель М. Кремера дает этому очень убедительное объяснение (хотя сам М. Кремер и не показал этого в достаточно ясном виде). А объяснение это заключается в том, что рост численности населения мира с 10 до 100 млн человек подразумевает, что и уровень развития жизнеобеспечивающих технологий вырос приблизительно в десять раз (так как он оказывается в состоянии поддержать существование на порядок большего числа людей). С другой стороны, десятикратный рост численности населения означает и десятикратный рост числа потенциальных изобретателей, а значит, и десятикратное возрастание относительных темпов технологического роста.

Таким образом, абсолютная скорость технологического роста вырастет в 10*10 = 100 раз… А так как N стремится к технологически обусловленному потолку несущей способности Земли, мы имеем все основания предполагать, что и абсолютная скорость роста населения мира (dN/dt) в таком случае в тенденции вырастет в 100 раз, то есть будет расти пропорционально квадрату численности населения» [7].

Изобретательская теория Коротаева и соавторов требует большого числа незначительных изобретений. На самом же деле новационный (и инновационный) процесс устроен иначе: все действительно значимые изобретения, открытия немногочисленны и представляют собой цепочку, в которой каждое последующее звено вытекает из предыдущего. Для Мир-системы в XIX и XX веках – это так называемые «базисные инновации» (по Л. Нефедову), которые в течение последующих десятилетий играют роль локомотива мировой экономики.

Например, в начале прошлого века Планк открывает, что процессы излучения и поглощения нагретым телом электромагнитной энергии происходят дискретно, а Эйнштейн вводит понятие кванта излучения. В двадцатых годах создается квантовая теория; в тридцатых – физика твердого тела; в конце сороковых изобретен первый транзистор; в начале шестидесятых – первая интегральная микросхема.

В конце семидесятых – первый твердотельный компьютер; в начале XXI столетия сотовый телефон становится средством массовой коммуникации. Вряд ли кто-нибудь будет возражать, что изобретение сотовой связи очень сильно повлияло на социум, в том числе и в плане роста его численности.

Но Макс Планк сделал свое открытие в известной мере случайно, оно могло быть совершено другим исследователем как раньше, так и позже отмеченного момента времени. И если сдвигать это первое звено во времени, то с ним сдвигается и вся цепочка. Именно так, а не по Коротаеву, когда мелкие инновации «мгновенно» поднимают потолок несущей способности Земли, устроен научно-технический, социальный и демографический прогресс.

В статье «Человечество подошло к пределу своего роста» А.В. Коротаев и соавторы с удивлением замечают, что модель Кремера заводит их в тупик. Ведь после демографического перехода рост численности населения Земли должен полностью прекратиться, а значит прекратится и всякий творческий процесс. Творчество больше не нужно? – Вопрошают они. А, может, все-таки модель Кремера неверна? Ведь сам Кремер ее так до конца и не сформулировал. Что-то, видимо, его удержало.

Развивая «мальтузианско-кузнецианский» подход, авторы [7] формулируют задачу на языке кибернетики и вводят в рассмотрение нелинейные обратные связи между основными субсистемами «Мир-системы». Но все попытки объяснить как гиперболический рост, так и демографический переход положительными и отрицательными обратными связями в «Мир-системе» (для человечества в целом!) чисто умозрительны, разноплановы и неубедительны. Можно ли поверить в то, что «положительная обратная связь второго порядка», в случае роста численности народонаселения, столь сбалансированна и точна, что погрешность в формуле Фёрстера для показателя степенной функции составляет всего один процент? (Точнее, n = -0,99 ± 0,009).

После демографического перехода уже два контура обратной связи, положительной и отрицательной, т. е. целая система автоматического регулирования, удерживают численность на фиксированном уровне. При этом речь не идет об исчерпании каких бы то ни было ресурсов. Несущая способность Земли может выдержать значительно большую численность. И совершенно непонятно какие такие ограничения механизма развития начинают вдруг играть доминирующую роль.

Законы роста численности изолированных популяций

Введение





Популяция – это совокупность особей одного вида, обладающая общим генофондом и проживающая на общей территории. Она является элементарной генетической единицей вида, первой надорганизменной биологической системой. Считается, что любая популяция способна к неопределенно долгому самостоятельному развитию.

Биотическим потенциалом вида называется показатель скорости роста численности особей этого вида при отсутствии ограничивающих факторов. Совокупность же таких ограничивающих рост популяции факторов называется сопротивлением среды.

Состояние равновесия между биотическим потенциалом вида и сопротивлением среды, поддерживающее постоянство численности популяции, называют популяционным гомеостазом. При его нарушении возникают колебания численности. Различают периодические и непериодические колебания численности популяции.

Обычное, нормальное состояние популяции – это гомеостаз с неизменной численностью, который поддерживается отрицательными обратными связями, обеспечивающими такой гомеостаз. Но в редких случаях численность популяции меняется и за короткий промежуток времени может значительно возрасти или уменьшиться. Этот редкий случай нарушения гомеостаза только и будет здесь нас интересовать.

Причем нами будут рассмотрены только законы роста: законы, по которым растет численность изолированной популяции, т. е. популяции более или менее отделенной в пространстве от других аналогичных совокупностей того же вида. Эти законы представляют для нас интерес в связи с законом роста численности населения Земли.

Идеализации

Построение математической модели какого-либо объекта, явления неизбежно требует принятия некоторых упрощений, идеализаций. Чем больше идеализаций, тем проще модель, тем удобней с ней работать и тем уже спектр явлений, который она способна описать.

С другой стороны, идя по пути усложнения модели, нужно иметь в виду, что даже максимально сложная, «все учитывающая» модель все равно остается всего лишь моделью и неспособна полностью описать явление, зато способна перенести львиную долю внимания исследователя с самого явления на абстрактный математический аппарат, его описывающий.

Поэтому в математическом моделировании существует золотая середина степени усложнения. В математической экологии эффективны простые модели с большим количеством идеализаций. Рассмотрим идеализации для модели роста изолированной популяции, т. е. такой популяции, взаимодействия в которой возможны только между представителями данной популяции [12]:

1. Постоянство внешних условий, т. к. прежде чем исследовать роль внешних воздействий следует проанализировать свойства идеальной, изолированной популяции, на динамику численности которой влияют лишь биотические факторы, причем только те из них, что связаны с внутривидовой деятельностью. Под постоянством внешних по отношении к растущей популяции условий будем понимать также и независимость роста (при прочих равных условиях) от того, на каком участке шкалы физического времени он наблюдается. В уравнениях такого роста не должно, следовательно, явным образом присутствовать время, т. е. они должны быть автономными.