Страница 1 из 17
Предисловие
Наше исследование касается проблем, связанных с парадоксальным, никак не вписывающемся в современную научную парадигму, гиперболическим ростом населения Земли. В коротком введении опишем этот удивительный рост – то, как он был открыт и как первоначально интерпретирован.
Прежде чем приступать к критике существующих теорий, рассмотрим вопрос о том, может ли закон квадратичного роста, согласно которому при удвоении численности прирост возрастает в четыре раза, соответствовать какому-либо реальному репродуктивному процессу. Аргументы, доказывающие невозможность такого роста как автокаталитического процесса, мы изложим в главе «Законы роста численности изолированных популяций».
Потом обсудим все логически возможные теории гиперболического роста, главное внимание уделив недостаткам тех из них, что построены на законе квадратичного роста как на причинном законе. И, наконец, в главе «Критика» представим критический анализ всех имеющихся гипотез, объясняющих феномен роста населения Земли, сосредоточившись на наиболее известных моделях Капицы, Коротаева и Подлазова. В качестве альтернативы этим редукционистским моделям рассмотрим сетевую модель, связь между численностью населения Земли и ее приростом в которой не считается причинной.
Отдельная и очень важная тема, которой мы коснемся в этой книге, – это связь роста и развития. Она, так или иначе, присутствует во всех существующих теориях. В модели Капицы она представлена в форме демографического императива Капицы: растущая численность населения мира, согласно этому принципу, является причиной прогрессивного развития. В модели Коротаева гиперболический рост населения Земли вызывается ростом числа изобретений и открытий. Модель Подлазова основывается на предположении о том, что этот аномальный рост определяется ростом числа жизнесберегающих технологий. В сетевой модели численность населения мира в период гиперболического роста выступает в качестве количественного показателя роста и развития человечества как системы.
Введение
Загадка гиперболического роста
Все человечество в целом обладает некой общностью, которую историки могли бы надеяться постичь так же глубоко, как им удается постичь то, что объединяет группы меньшего размера.
Уильям Макнилл, «Мифстория» (Mythistory)
Все началось в начале 60-х годов прошлого столетия со статьи немецкого инженера Хейнца фон Фёрстера и его коллег П. Moрa и Л. Амиот, опубликованной в журнале «Science», которая называлась «День страшного суда: пятница 13 ноября 2026 года». Анализируя большой объем демографических данных от начала новой эры до 1960 года по методу наименьших квадратов, они выяснили, что зависимость численности населения Земли от времени хорошо аппроксимируется степенной функцией с показателем n = −1.
Причем точность, с которой был определен показатель n, получилась очень высокой: доверительный интервал оказался равным всего одной сотой! Так впервые обнаружилось, что население Земли (не страны и народы в простой их совокупности, а все человечество в целом!) представляет собой систему, растущую в соответствии с простейшим гиперболическим законом.
Рис 1. Закон гиперболического роста населения Земли; C = 187 млрд лет — постоянная Фёрстера; Т0 = 2026 г. — точка сингулярности гиперболы Фёрстера.
Статья привлекла внимание ученых всего мира. Согласно формуле на рис. 1 численность человечества 13 ноября 2026 года должна будет устремиться к бесконечности. Но не только апокалиптический результат этого исследования вызывает удивление. Уже сам факт гиперболического роста населения Земли, и мы в дальнейшем это покажем, приводит к неизбежному выводу: человечество на протяжении последних двадцати столетий представляло единую, взаимосвязанную (каждая часть – с каждой), растущую систему. Поверить в такую системность очень трудно и для ее объяснения авторами была привлечена модная в то время теория игр.
«Однако то, что может быть правильным по отношению к элементам, которые из-за отсутствия между ними адекватной коммуникации должны принимать участие в соревновательной игре с (почти) нулевой суммой выигрыша, может быть неправильным для элементов, обладающих системой коммуникации, которая дает им возможность образовывать коалиции, пока все элементы не оказываются столь сильно связаны между собой, что все население с точки зрения теории игр может рассматриваться в качестве единого игрока, ведущего игру, в которой в роли второго игрока-оппонента выступает природа»[3].
Формула Фёрстера была уточнена немецким физиком С. Хорнером. Полученная им простая зависимость описывает с удивительной точностью рост населения мира в течение многих тысяч лет [2].
Рис 2. Гипербола Хорнера: зависимость численности населения Земли от начала неолита до второй половины ХХ века.
С момента открытия закона роста населения Земли прошли десятилетия, однако загадка этого «аномального» гиперболического роста так и остается неразгаданной.
«Томас Роберт Мальтус (1766–1834) вошел в историю благодаря книге «Опыт о законе народонаселения, или изложение происшедшего и настоящего действия этого закона на благоденствие человеческого рода», анонимно опубликованной в 1798 году. В этом труде он утверждал, что численность населения, если тому не возникает помех, возрастает в геометрической прогрессии. И, как выяснилось позже, это действительно так, для всех видов от амебы до слона в условиях избытка ресурсов.
Для всех, кроме человека. Данные палеодемографов показали, что в течение последних двух миллионов лет численность населения росла гораздо быстрее. И результаты налицо: нас в десять тысяч раз больше, чем наших ближайших родственников, человекообразных обезьян. Почему? И что с этим законом произойдет дальше? Это фундаментальные вопросы мировой динамки, антропологии, демографии. Передний край»[4].
Гиперболического роста просто не должно было быть: колонии бактерий так не растут, популяции животных так не размножаются. Не вызывает также доверия объяснение этого роста «информационным взаимодействием всех людей Ойкумены», которое предложил С.П. Капица.
Для того, чтобы почувствовать сколь необычным, парадоксальным был этот рост на протяжении всей истории развития человечества нужно изобразить его график без применения логарифмического масштаба. Представим себе стандартную малогабаритную квартиру. Оклеим ее стену миллиметровой бумагой. Ширина 4 метра, высота 2,5 метра. Масштаб по горизонтали: один миллиметр – 1000 лет, один сантиметр – 10 000 лет, один метр – 1 миллион лет.
Масштаб по вертикали: один миллиметр – 5 млн человек (население Петербурга), сантиметр – 50 млн человек (немного меньше половины населения России), метр – 5 миллиардов человек (несколько меньше населения Земли в 2000 году – 6,5 млрд). Род Homo появился примерно 2 млн лет тому назад, его численность в то время была ~ 100 тысяч.
В момент начала неолита (8 тысяч лет до н. э.), с которого начался форсированный рост популяции, ее численность была примерно равна 10–15 миллионам. Начало координат поместим посередине стены внизу у пола, ось N направим вверх. Начинаем строить график с левого нижнего угла.
На протяжении двух метров «кривая» почти не отрывается от плинтуса и достигает в момент начала неолита высоты всего 3 мм. Затем на отрезке 11 мм она вздымается на высоту двух метров. График здесь столь крут, что его можно считать вертикалью. И далее, без всяких промежуточных стадий, эта «вертикаль» переходит в «горизонталь».
3
Foerster, Mora, and Amiot 1960
4
Компьютерра № 27–28 от 1 августа 2007 года.