Добавить в цитаты Настройки чтения

Страница 14 из 17



Рис. 1. Обобщенный закон свободного роста изолированной популяции.

Причем значение этой функции при N = 0 должно быть равным нулю: F(0) = 0, т. к. иначе пришлось бы допустить существование составляющей прироста, не зависящей от численности популяции. Так, например, при N = 0, т. е. при полном отсутствии членов популяции, скорость роста была бы не равна нулю. Что противоречит фундаментальному свойству жизни: живое происходит только от живого, и прирост определяется, прежде всего, численностью.

Если все же допустить присутствие аддитивной константы в правой части уравнения (5), то в простейшем случае, если отбросить линейный и нелинейный член и оставить только константу, получим закон линейного роста численности от времени, который не может описывать рост никакой свободно растущей популяции, поскольку прирост здесь является постоянным и никак не зависит от растущей численности. (Это утверждение находится в противоречии с феноменологической теорией Капицы, согласно которой скорость роста численности гоминид на первом этапе продолжительностью 2,8 млн лет была постоянной и не зависела от растущей численности.)

Если же оставить линейный член плюс константа от нелинейного – получим простейшее линейное неоднородное дифференциальное уравнение первого порядка с постоянными коэффициентами. В зависимости от знаков С и α имеется четыре варианта роста численности.

Рис. 2. Пример простейших линейных законов, которые не могут описывать свободный рост (убывание) численности популяции.

1. Случай С > 0, α > 0 можно интерпретировать как экспоненциальный рост популяции с учетом постоянного дополнительного прироста за счет клонирования. При этом численность популяции неограниченно возрастает.

2. Случай С < 0, α > 0 – рост численности популяции рыб в «неограниченном» водоеме с заданной квотой отлова. Численность популяции неограниченно возрастает.

3. Для случая С > 0, α < 0 можно предложить такую леденящую душу легенду: вымирающее человечество с отрицательным коэффициентом естественного прироста, постепенно заменяемое киборгами (инопланетянами) с тем же коэффициентом естественного прироста α < 0, что у людей; С – число киборгов, вводимых в социум за месяц, αN – число погибших за месяц членов социума (киборгов и людей). При приближении к асимптоте N = −С/α «человеческая составляющая» социума устремляется к нулю.

4. Случай С < 0, α < 0 – совсем уже печальный с N = 0 в итоге: планомерное истребление и без того уже вымирающей по естественным причинам популяции.

Все это примеры несвободного, управляемого роста популяции, т. к. в каждом из этих случаев прирост ее численности происходит не только за счет собственной способности популяции к размножению (αNΔt), но и за счет сторонних (управляющих) сил, вносящих постоянный вклад в этот прирост (СΔt). Следовательно, уравнение (4) не может считаться причинным законом, а при α > 0 (т. е. в случае роста популяции) процесс роста, описываемый этим уравнением, не может быть определен как простой автокаталитический, самоускоряющийся процесс.

Итак, уравнение (4) не может служить для описания динамики свободного роста популяции каких-либо организмов из-за присутствия в его правой части аддитивной константы. В дальнейшем будем говорить только о мальтузианской составляющей, определяющей рост популяции, т. е. считаем, что α > 0.



Согласно теореме о разложении функции в степенной ряд, любую «достаточно хорошую» функцию всегда можно в такой ряд разложить. Следовательно, нелинейный член F(N) в правой части уравнения (5) можно разложить в ряд Маклорена; при этом первый и второй член разложения должны быть равны нулю: βo = β1 = 0, т. к. константу отбрасываем, а линейный член равен αN, α > 0.

Полученное уравнение с разделяющимися переменными можно проинтегрировать для каждой конкретной F(N). Отсутствие аддитивной константы в правой части приводит к тому, что она обращается в нуль при N = 0. Т. к. левая часть уравнения – это производная от численности по времени или скорость роста, то для кривой роста имеется горизонтальная асимптота, совпадающая с осью времени, т. е. такая же асимптота, как у экспоненты.

Это хороший показатель, он говорит о том, что рост численности популяции, определяемый обобщенным законом роста в его идеальном описании с непрерывной численностью, не имеет начала. Если бы рост начинался в некоторый фиксированный момент времени, пришлось бы давать какое-то объяснение выделенности этого момента, как, например, при описании степенного параболического роста.

Кроме того, очень важно понимать то, что линейным членом αN в обобщенном уравнении роста (5) пренебречь нельзя в принципе. Перечислим причины, почему это так:

1. Т. к. разложение F(N) начинается с квадратичного члена, то F(N)/αN → 0 при N → 0, откуда следует, что при небольшой численности рост описывается линейным уравнением Мальтуса, является экспоненциальным и не зависит в первом приближении от взаимодействий между членами популяции. Т. е. получается правильная асимптотика.

2. Если отбросить линейный член αN, оставить только F(N) и считать, например, что F(N) = βiNi, βj = 0, j ≠ i, т. е. все члены разложения кроме одного равны нулю, как в уравнении Капицы, то получаем причинный закон степенного роста, согласно которому, как мы покажем в главе «Критика», не растет ни одна популяция в природе. Если же в разложении F(N) присутствует более одного члена, а функция F(N) является монотонной, что соответствует любому реально возможному росту изолированной популяции, то и в этом случае можно показать, что рост будет аналогичен степенному со всеми теми противоречиями, которые были рассмотрены нами ранее.

3. Согласно первому закону экологии популяций, все популяции в неизменных, благоприятных внешних условиях и при отсутствии взаимодействий – растут экспоненциально. Взаимодействия могут замедлить или ускорить этот экспоненциальный рост, но полностью отменить его они не могут. Если взять, к примеру, размножающееся человечество, то это, прежде всего, биологический вид, такой же как и множество других видов, когда-либо существовавших в природе, умножающий численность своих популяций по закону Мальтуса; и только затем его можно рассматривать как совокупность существ с множеством изученных и неизученных социальных связей, влияющих на всё и вся, в том числе и на мировой естественный прирост. (По закону Мальтуса могла расти численность популяций первых архантропов и отдельных народов в историческое время, когда была выполнена третья из обозначенных нами идеализаций об однородности популяции.)

Важным следствием обобщенного закона является уравнение (6): зависимость коэффициента естественного прироста ΔN/NΔt (среднего прироста численности на особь популяции за единицу времени) от полной численности этой популяции.

Эта зависимость может существовать только в том случае, если популяция представляет собой систему взаимодействующих особей, что возможно для сосредоточенной популяции с небольшим по площади ареалом обитания или для пространственно-рассредоточенной, но объединенной единым информационным полем Мир-системы растущего человечества.

Что полностью отвечает тем идеализациям, которые изначально закладывались в обобщенную модель. И что, несомненно, значительно снижает ее эвристическую ценность. (Учет «распространения» в пространстве особей (информации) приводит к необходимости построения моделей второго типа, основанных на уравнениях типа диффузия-кинетика, т. е. к значительно более сложной математике.)