Добавить в цитаты Настройки чтения

Страница 17 из 20

Полезные микроорганизмы?

О том, что бактерии и другие микроорганизмы могут быть вполне полезными, ученые узнали очень скоро после того, как Сергей Виноградский примерно в 1890 году объяснил круговорот азота в природе и определил однозначную роль, которую почвенные бактерии играют для естественного азотного удобрения. В рамках своих исследований он также обнаружил бактерии, которые могли получать энергию из железистой соли, сероводорода или аммиака. А в 1907 году Мечников годом позднее получил Нобелевскую премию за свои открытия в области иммунных исследований. Ученый предположил, что бактерии, которые попадают в кишечник человека с пищей, полезны и продлевают жизнь (подробнее см. в главе 18).

Наибольшей пользой для ученых, исследующих микроорганизмы, немного погодя стала их пригодность в качестве предмета изучения и инструмента наблюдения. Это довольно маленький, недорогой, легко доступный, манипулируемый, быстро растущий экспериментальный материал. На них можно было отрабатывать проблемы биологии – например, вопросы сексуальности, обмена веществ, экологии, генетики мутации и изменчивости.

Уже в 1900 году Мартин Бейеринк предположил, что бактерии и грибы гораздо лучше подходят для того, чтобы исследовать закономерности наследования, чем растения или животные. Он основал в Делфте – родном городе Левенгука – нидерландскую школу микробиологии. Там при помощи биохимических методов начали проводить исследования жизненных процессов, ферментативных действий и закономерностей наследования микроорганизмов. В Калифорнии в 1936 году благодаря перекрестным исследованиям гриба рода Neurospora были открыты первые генетические карты. Инфицирующие бактерии вирусы, так называемые фаги, пару лет спустя позволили шагнуть вперед в вопросах молекулярной генетики. Кульминацией стала расшифровка структуры ДНК Джеймсом Уотсоном, Фрэнсисом Криком и Розалинд Франклин в 1953 году. После этого бактерии и их генетический материал стали важнейшим объектом исследований таких генетиков, как Жак Моно Франсуа Жакоб и многих других, которые по ним мало-помалу изучали, как организованы гены и каким образом они управляются.

Но в какой-то момент времени микробы в научных исследованиях все больше выходили из моды. В 1979 году оспа официально была объявлена искорененной. Почти за десять лет до этого Уильям Г. Стьюард, начальник медицинской службы США и вместе с тем главный врач страны, огласил, что тему инфекционных заболеваний теперь можно закрыть. То, что считалось действительным со времен Бейеринка на протяжении почти ста лет, а именно что микробы были одновременно значимыми возбудителями заболеваний и хорошими экспериментальными организмами, теперь больше не являлось достаточным. Вместо бактерий теперь следовало изучать эукариотов – организмы с клеточными ядрами. Вместо простейших организмов теперь стало возможным исследовать многоклеточные, лучше всего человеческие клетки. Даже самые авторитетные исследователи, которые должны быть благодарны микроорганизмам за свою популярность, например исследователь ДНК Джеймс Уотсон, обратились к ним, к примеру, с целью успешно победить рак. В 90-х годах практически каждый заведующий кафедрой микробиологии и генетики в Германии подчеркивал, что все меньше занимается бактериями и все больше – культурами «высших» клеток. На рубеже тысячелетий была опубликована расшифровка человеческого генома, сделанная ученым Крейгом Вентером.

Второй геном

Однако расшифровку генома человека на этом этапе нельзя было считать абсолютным успехом, поскольку полученные знания сложно было применить в конкретных методах терапии.

Более или менее в тени бума эукариотов и многоклеточных организмов несколько микробиологов все же не отстранялись от своих бактерий и разрабатывали методы, которые открыли перед наукой совершенно новые возможности. Карл Везе совместно с коллегами в 1980 году произвел переворот в изучении микроорганизмов без клеточного ядра. Ученые обнаружили, что одной части наследственного материала клеточного механизма достаточно, чтобы объяснить родственные связи между микроорганизмами. Такая часть называется 16S-рРНК. В клетках она выполняет обязанности катализатора при производстве протеинов и подходит намного лучше, чем, например, любое микроскопическое объединение, для того чтобы различать виды, роды и так далее. К исследованиям в 1980-х годах присоединился разработанный Кэри Муллисом метод полимеразной цепной реакции, с помощью которой можно было воспроизводить даже самые крошечные частички наследственного материала и тем самым делать их доступными для анализа. Итак, впервые стало возможным заполучить те бактерии, которые не поддавались разведению в чашках Петри, вернее их наследственный материал. Их было больше всего. Микробиологи до этого открытия были ограничены в том, чтобы исследовать те микроорганизмы, которые также зарождались в чашках. Все остальные, которые выдвигали другие требования, для того чтобы делиться и расти, оставались почти полностью недоступными для изучения. К последним относилась большая часть ротовых, желудочных и кишечных бактерий, и между тем обнаруживается, что многие из-за этого попросту не поддавались культивированию по отдельности, поскольку для жизни им требовались другие бактерии.

Такие «культуронезависимые» техники, к которым вскоре добавились еще и другие, которые звучат как гибридизация in situ, T-RFLP или пиросеквенирование, открыли микробиологии и изучению эукариотов абсолютно новые пути.

Везе в рамках этих методов после многолетней кропотливой работы пришел к такому выводу.





То, что раньше считалось царством бактерий, на самом деле состоит из двух больших групп, бактерий и архей{47}.

Их 16S-рРНК отличаются друг от друга даже сильнее, чем в случае с бактериями и обладающими клеточными ядрами многоклеточными организмами. Великой иронией истории развития науки стало то, что умерший в 2012 году 84-летний Везе, скрупулезный работник, перевернувший всю биологическую систематику, не получил ни одной Нобелевской премии, Муллис же – наоборот. Его метод по размножению наследственного материала, должно быть, открылся ему под воздействием наркотических веществ. Практическое осуществление его идеи он предоставил другим ученым, а в остальном он не мог похвастаться большими научными достижениями.

Новые методы, с одной стороны, и разочарование по поводу конкретных, применимых в терапии результатов изучения генома человека, мыши и других грызунов, с другой стороны, привели к тому, что сегодня мы снова возвращаемся к изучению бактерий. Крейг Вентер, например, в 1995 году начал свою карьеру генетика с генетического секвенирования бактерии Haemophilus influenzae. Это было первым секвенированием полного генома в принципе. Именно Вентер осуществил практические поиски бактерий, их генов и действий этих генов. Решение проблем человечества он видит не в расшифровке человеческого генома, а в бесконечно многих геномах бактерий на суше, в воде и в воздухе, от борьбы с болезнями вплоть до обеспеченности питанием, энергией и даже в утилизации мусора.

Это только начало эпохи исследования микробов, ведь только сейчас постепенно проясняется, что они господствуют повсюду: и на суше, и на воде, и в воздухе. Довольно перспективным становится изучение жизненного пространства микробов. Объектом изучения стал сам человек, его кожа, его естественные отверстия и главное – его пищеварительный тракт. Его второй геном.

Почти через 350 лет, после того как Антони ван Левенгук впервые увидел через свои суперлинзы «микроскопические организмы», а среди них бактерии, мы наконец-то начали осознавать их настоящее значение, их комплексное взаимодействие с нами и окружающей средой.

Свойственный человеческой точке зрения их дуализм оздоровительного и болезнетворного, полезного и опасного – центральная тема их изучения. Это – одна ось хорошего и плохого. И иногда одна-единственная бактерия соединяет все это в себе. Об этом и пойдет речь в следующей главе.

47

Woese et al.: Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. PNAS. Том 87. С. 4576, 1990.