Добавить в цитаты Настройки чтения

Страница 23 из 27

Рассмотрим два различных случая.

1. Авнутр. = Авнешн. Если адсорбционные потери пренебрежимо малы, т. е. Аадс. << А0, то Авнутр. = Авнешн. = А0/2. Такое распределение радиоактивного изотопа возможно только в том случае, когда доля коллоидной формы равна нулю. Если адсорбция радиоактивного изотопа относительно велика, то Авнутр. = Авнешн. < А0/2. Установление равновесного распределения обусловлено в этом случае двумя процессами: 1) диффузией ионов радиоактивного изотопа через мембрану, 2) адсорбцией ионов радиоактивного изотопа на поверхностях прибора и мембраны, соприкасающихся с раствором. Для катионов, диффундирующих через мембрану, адсорбционные потери могут быть особенно велики, так как мембраны заряжены в растворе, как правило, отрицательно и, кроме того, обладают огромной внутренней адсорбционной поверхностью. Таким образом, в результате адсорбции общее количество радиоактивного изотопа во внешнем и внутреннем растворах может заметно уменьшиться. Но, тем не менее, в случае ионного состояния Авнутр. = Авнешн..

Существует другая точка зрения, согласно которой равенство Авнутр. = Авнешн. < А0/2 возможно и в том случае, если часть радиоактивного изотопа во внутреннем растворе находилась первоначально в коллоидном состоянии. Такое объяснение основано на предположении, что коллоидные частицы радиоактивного изотопа полностью адсорбируются внутри диализатора и не участвуют в распределении. Однако коллоидные частицы радиоактивных изотопов, присутствующих в микроконцентрациях, не способны диффундировать в глубь мембраны, внутренняя поверхность которой остается недоступной для их адсорбции. Поэтому предположение о 100%-м поглощении коллоидов радиоактивного изотопа при заведомо неблагоприятных условиях и об отсутствии адсорбционного равновесия (коллоиды на поверхности – коллоиды в растворе) является маловероятным.

Рассмотрим случай, когда часть радиоактивного изотопа находится в псевдоколлоидном состоянии. Между ионами, адсорбированными на загрязнениях, и ионами в растворе устанавливается подвижное равновесие. В процессе диализа часть ионов переходит во внешний раствор и равновесие смещается. Ионы, прошедшие сквозь мембрану, будут снова адсорбироваться на загрязнениях, еще более сдвигая адсорбционное равновесие во внутреннем растворе, и если количества случайных коллоидных загрязнений во внешнем и внутреннем растворах приблизительно одинаковы, то с течением времени Авнутр. = Авнешн.

Таким образом, псевдоколлоидное состояние может в определенных условиях проявляться как ионное. Эта особенность диализа псевдоколлоидных растворов была использована Ратнером для выяснения природы коллоидного состояния Ро.

2. Авнутр. > Авнешн. Качественное установление коллоидного состояния радиоактивного изотопа в растворе методом диализа не представляет трудностей. Для этого достаточно убедиться, что с течением времени активность внешнего раствора становится величиной постоянной и меньшей, чем активность внутреннего раствора. Значительно сложнее определить процент коллоидной формы, поскольку для этого необходимо не только учитывать величину адсорбционных потерь радиоактивного изотопа в целом, но и знать, какая доля этих потерь обусловлена адсорбцией коллоидных и ионных частиц по отдельности. Иначе говоря, надо знать, насколько изменилось соотношение коллоидной и ионной форм радиоактивного изотопа во внутреннем растворе из-за того, что ионы и коллоиды адсорбируются в различной степени. Экспериментальное осуществление такой задачи представляет большие трудности. Поэтому для получения количественных результатов при диализе полидисперсных растворов надо стремиться к тому, чтобы адсорбционные потери были равны нулю.

Метод диализа был применен для изучения процессов комплексообразования и гидролиза в растворе. В основу метода был положен тот факт, что скорость диализа ионов или молекул через мембрану существенным образом зависит от их массы и размера.





Определив константы диализа исследуемого иона и иона сравнения, молекулярный вес которого в данном растворе точно известен, мы можем определить молекулярный вес исследуемого соединения. Однако во многих случаях не установлена определенная функциональная зависимость между молекулярным весом и константой диализа. Так, увеличение константы диализа λ в ряду Li, Na, К, Rb, Cs противоречило закону Рика; увеличение константы диализа иона бихромата при подкислении раствора противоречило известным фактам образования полихроматов в сильно кислой среде. Было показано, что коэффициенты диффузии комплексных анионов [SiMo12О40]4- и [SiW12O40]4- одинаковы, несмотря на различие их молекулярных весов.

Величина коэффициента диализа определяется не только молекулярным весом вещества, находящегося в растворе, но и рядом других факторов, в частности степенью полимеризации и гидратации, формой молекулы, ее зарядом и т. д. Следовательно, диализ не может служить методом определения молекулярного веса вещества в растворе. Однако то обстоятельство, что внедрение лиганда в координационную сферу иона очень часто приводит к изменению гидратной оболочки, формы молекулы, ее заряда и т. д. (что в свою очередь может изменить величину константы диализа), позволяет применить этот метод для изучения процессов комплексообразования в растворе. В данном случае несущественно, какие изменения при внедрении нового лиганда произошли во внутренней сфере иона. Важно только, чтобы имеющиеся в распоряжении исследователя аналитические методы позволили заметить произошедшее при этом изменение скорости диализа изучаемого соединения. Исследование влияния условий осуществления диализа на константу скорости процесса, позволяет выявить изменение форм состояния микрокомпонента в растворе.

В настоящее время вместо полупроницаемых мембран используют селективные и ионообменные мембраны. Кроме того, диализ можно проводить при наложении электрического поля, что позволяет одновременно определить размер и заряд частицы, соответственно получить более полную информацию о формах нахождения микрокомпонента в растворе.

Метод ультрафильтрации, так же как и метод диализа, позволяет непосредственно установить наличие в растворе частиц коллоидных размеров. В отличие от диализа при ультрафильтрации разделение ионной и коллоидной фракций происходит не посредством диффузии ионов через полупроницаемые мембраны, а путем пропускания раствора через ультрафильтры, обладающие различным диаметром пор. При этом коллоидные частицы размером, превышающим размер пор, задерживаются ультрафильтром.

Ультрафильтрация является более быстрым и удобным методом определения коллоидной формы радиоактивного изотопа, чем диализ. Кроме того, методом ультрафильтрации можно проще и с большей уверенностью установить соотношение ионной и коллоидной форм для микроконцентраций радиоактивных изотопов, находящихся в растворах.

В качестве ультрафильтров могут быть использованы мембраны, имеющие различный диаметр пор. В зависимости от размера пор для фильтрования применяют вакуум или проводят фильтрование под давлением. Ввиду того, что размеры коллоидных частиц радиоактивных изотопов, присутствующих в растворах в микроконцентрациях, могут быть очень малы (~1 нм), удобным ультрафильтром является целлофан с диаметром пор 1 – 3 нм. Для фильтрации раствора через целлофановые ультрафильтры процесс проводят под давлением 5 – 10 атм. Скорость фильтрации через целлофановый фильтр при давлении 5 – 8 атм. может достигать 1 – 1, 5 мл/час. Доля коллоидной формы может быть вычислена по формуле: