Добавить в цитаты Настройки чтения

Страница 19 из 34

Следующий серьезный шаг на этом пути был сделан лишь в 1941 году, когда Джордж Бидл и Эд Тейтем опубликовали свое исследование об индуцированных мутациях у нейроспоры густой (хлебной плесени). Джордж Бидл вырос близ города Уаху в штате Небраска и унаследовал бы родительскую ферму, если бы общение со школьным учителем естествознания не заставило его задуматься об иной карьере. В течение 1930-х годов Бидл работал сначала в Калифорнийском технологическом институте с Морганом, прославившимся исследованием дрозофил, а затем в Институте физико-химической биологии в Париже. Бидл без остатка посвятил себя генетическим исследованиям, пытаясь, к примеру, выяснить, как работает «магический механизм» генов при изменении цвета глазок у дрозофил. Прибыв в 1937 году в Стэнфордский университет, он заручился помощью Тейтема, который присоединился к Бидлу вопреки мнению своих научных консультантов. Эд Тейтем одновременно оканчивал Университет Висконсина и там же учился в аспирантуре, исследуя бактерии, живущие в молоке; поскольку Висконсин также называют «Сырный штат», то молоко и молочные продукты были там в избытке. Несмотря на то что сотрудничество с Бидлом обещало быть занимательным и интеллектуальным, висконсинские преподаватели Тейтема убеждали его сделать карьеру в молочной промышленности, чтобы впоследствии не испытывать финансовых затруднений. К счастью для всей науки, Тейтем предпочел Бидла сливочному маслу.

Вскоре Бидл и Тейтем осознали, что дрозофила – слишком сложный организм и не подходит для интересующих их исследований. Искать конкретную мутацию у такого животного, как дрозофила, – все равно что искать иголку в стоге сена. Вместо этого они решили работать с абсолютно примитивным видом – нейроспорой густой (Neurospora crassa), красно-оранжевой хлебной плесенью, встречающейся в тропиках. Их план был предельно прост: облучать плесень рентгеновским излучением, вызывая в ней мутации, – так Меллер поступал с дрозофилами – и пытаться выяснить, как возникающие мутации влияют на Neurospora crassa. Отслеживать эффект мутаций они пытались следующим образом. Было известно, что обычная (не мутировавшая) нейроспора выживает в так называемой минимальной питательной среде. Оставаясь на таком «голодном пайке», микроорганизмы, очевидно, могли самостоятельно синтезировать все сравнительно крупные молекулы, необходимые им для жизни, собирая их из более простых молекул питательной среды. Бидл и Тейтем рассудили, что если возникнет мутация, которая исключит все эти синтетические пути, то получившаяся облученная культура плесени не сможет расти в минимальной питательной среде; тем не менее та же культура должна формировать колонии в «полноценной» питательной среде, где есть все необходимые для жизни молекулы, в частности аминокислоты и витамины. Иными словами, мутация, блокирующая синтез основного питательного вещества, окажется безвредной, если это питательное вещество можно будет брать непосредственно из питательной среды.

Бидл и Тейтем облучили около пяти тысяч плесневых культур и стали проверять их одну за другой на предмет, выживут ли они в минимальной питательной среде. Первая… вторая… третья… и только тогда, когда они добрались до 299-й культуры, выяснилось, что она действительно гибнет в минимальной питательной среде, а в полноценной выживает. Культура номер 299 оказалась первой из множества мутантных культур, которые им предстояло проанализировать. Далее требовалось выяснить, какое именно свойство утратили мутанты. Может быть, культура 299 не могла синтезировать незаменимые аминокислоты? Бидл и Тейтем попытались добавлять в минимальную питательную среду аминокислоты, но 299-я все равно не росла. Как насчет витаминов? Они добавили в минимальную питательную среду чуть-чуть витаминов, и на этот раз 299-я ожила. Теперь предстояло и далее сужать поле поиска, добавляя витамины по отдельности и проверяя, на каком этапе 299-я начнет расти. Ниацин не помог, рибофлавин тоже, но стоило им добавить витамин B6, и культура стала выживать в минимальной питательной среде. Мутация, возникшая при облучении и присущая культуре 299, каким-то образом вызывала разрушение синтетического пути, который обеспечивает производство B6. Но каким был механизм? Зная, что биохимический синтез такого рода управляется белковыми ферментами, обеспечивающими цепочку химических реакций биохимического пути, Бидл и Тейтем предположили, что каждая из открытых ими мутаций блокирует конкретный фермент. При этом, поскольку мутации происходят в генах, по-видимому, именно гены отвечают за синтез ферментов. Когда в 1941 году это исследование было опубликовано, появился слоган, отражающий наше представление о работе генов: «Один ген – один фермент».

Поскольку в тот период времени считалось, что все ферменты – это белки, вскоре встал вопрос: а кодируются ли в генах и те многочисленные клеточные белки, которые не являются ферментами? Что гены могут предоставлять информацию по всем белкам, впервые предположили в лаборатории Лайнуса Полинга в Калифорнийском технологическом институте. Полинг и его студент Харви Итано изучали гемоглобин, белок эритроцитов, основная функция которого состояла в доставке кислорода из легких к метаболически активным тканям, в частности к мышцам. Особенно их заинтересовал гемоглобин людей, страдающих серповидноклеточной болезнью, также именуемой серповидноклеточной анемией. Это генетическое расстройство, характерное для негроидов, а соответственно, и для афроамериканцев. Эритроциты у человека, страдающего серповидноклеточной анемией, деформируются и поэтому под микроскопом имеют выраженно серповидную форму. Эритроциты такой формы могут закупоривать капилляры, что вызывает ужасную боль и может даже привести к смерти. Дальнейшие исследования позволили объяснить преобладание такой болезни именно среди африканцев с эволюционной точки зрения: поскольку часть жизненного цикла у малярийного плазмодия протекает в эритроцитах, люди с серповидными эритроцитами легче переносят малярию. По-видимому, эволюция пошла на своеобразную сделку с дьяволом, подкинув такой «бонус» некоторым жителям тропиков: действительно, серповидноклеточная анемия обеспечивает какую-никакую защиту от вспышек малярии.





Итано и Полинг сравнили гемоглобин пациентов, страдающих серповидноклеточной анемией, с гемоглобином обычных людей и обнаружили, что у двух вариантов молекул гемоглобина различается электрический заряд. Примерно в тот же период, в конце 1940-х годов, генетики выяснили, что серповидноклеточная анемия передается как классический менделевский рецессивный фактор. Таким образом, заключили Итано и Полинг, серповидноклеточная анемия должна быть обусловлена мутацией в гене гемоглобина, которая влияет на химический состав получающегося гемоглобинового белка. Именно так Л. Полингу удалось уточнить версию Гаррода о врожденных ошибках метаболизма, охарактеризовав некоторые из них как «молекулярные болезни». Как раз такой молекулярной болезнью была серповидноклеточная анемия.

В 1956 году история о серповидноклеточной анемии, обусловленной мутацией гена гемоглобина, получила дальнейшее развитие благодаря Вернону Ингрэму, работавшему в той самой Кавендишской лаборатории, где мы с Френсисом Криком открыли двойную спираль. Вооружившись разработанными незадолго до того методами идентификации конкретных аминокислот в молекулярной цепочке, образующей белок, Ингрэм смог выявить именно те молекулярные различия, которые, по наблюдениям Итано и Полинга, влияли на общий заряд молекулы. Оказалось, что проблема состояла всего в одной аминокислоте.

Ингрэм определил, что глутаминовая кислота, идущая шестой в нормальной белковой цепочке, в гемоглобине больных серповидноклеточной анемией заменяется на валин. Так появилось убедительное доказательство, что генетические мутации – различия в последовательностях А, Ц, Г и Т в ДНК-коде конкретного гена – можно напрямую соотнести с различиями в аминокислотных последовательностях белков. Белки, являясь активными биомолекулами, синтезируют ферменты, катализирующие биохимические реакции, из белков образуются основные структурные составляющие организма, например кератин – ткань, из которой состоят кожа, волосы и ногти. Вот как ДНК, словно по волшебству, управляет клетками, их развитием, жизнью как таковой.