Добавить в цитаты Настройки чтения

Страница 18 из 34

Примерно в то же время биохимический механизм репликации ДНК анализировали в лаборатории Артура Корнберга в Университете им. Дж. Вашингтона в Сент-Луисе. Разработав новую, «внеклеточную» систему синтеза ДНК, Корнберг открыл особый фермент – ДНК-полимеразу, – скрепляющий элементы ДНК и обеспечивающий образование химических связей в остове ДНК. Выполненный Корнбергом синтез ДНК с использованием фермента ДНК-полимеразы оказался столь неожиданным и важным событием, что уже в 1959 году, менее чем через два года после ключевых экспериментов, Корнберг был удостоен Нобелевской премии по физиологии и медицине. После объявления о том, что Корнберг стал лауреатом этой премии, он сфотографировался с копией той модели двойной спирали, которую я возил в Колд-Спринг-Харбор в 1953 году.

Артур Корнберг на момент присуждения ему Нобелевской премии

Мэтт Мезельсон с ультрацентрифугой – аппаратом, в котором был проведен «самый красивый биологический эксперимент»

Вошла в роль: Николь Кидман снискала восторженные отзывы за роль Розалинд Франклин в театральной постановке «Фотография 51» компании Уэст-Энд (2015) по одноименной пьесе Анны Циглер (A

Лишь в 1962 году Френсис Крик, Морис Уилкинс и я сам получили Нобелевскую премию по физиологии и медицине. Розалинд Франклин четырьмя годами ранее безвременно скончалась от рака яичников – ей было всего тридцать семь лет. Незадолго до того они с Криком хорошо сработались и стали настоящими друзьями. После двух онкологических операций, которые так и не остановили рост раковой опухоли, Франклин любила прогуливаться в Кембридже с Криком и его женой Одиль.

В Нобелевском комитете существовало и продолжает соблюдаться строгое правило: никогда не делить одну премию более чем натрое. Если бы Франклин выжила, то возникла бы дилемма, кому присудить часть премии: ей или Морису Уилкинсу. Шведы могли бы решить эту проблему, удостоив в тот год их обоих Нобелевской премии по химии. Однако в данном случае эту премию по химии получили Макс Перуц и Джон Кендрю, выяснившие соответственно объемные структуры гемоглобина и миоглобина.

Меня много критиковали за то, как я охарактеризовал Розалинд Франклин в моей опубликованной в 1968 году книге «Двойная спираль», повествующей о событиях того времени. Хотя Розалинд долгое время отказывалась признавать, что ДНК – это двойная спираль, благодаря ее работе мы получили абсолютно незаменимые научные данные. К счастью, в настоящее время ее заслуги оценены по достоинству, в том числе и с моей стороны, в послесловии к книге «Двойная спираль». Бренда Мэддокс написала о ней душевную биографическую книгу «Розалинд Франклин: темная леди ДНК». Не менее талантливо образ Розалинд воссоздала Николь Кидман, завораживающе сыгравшая ее в пьесе «Фотография 51» (компания Уэст-Энд, 2015). Так называлась одна из фотографий B-формы ДНК, полученных методом рентгеновской дифракции, которые сделал Раймонд Гослинг, аспирант Розалинд (о нем я рассказывал на с. 62). Этот снимок позволял предположить, что молекула имеет спиралевидную форму. Розалинд отложила этот снимок в сторону в мае 1952 года, а Морис Уилкинс показал мне его только в январе 1953 года. Честно говоря, ей он в этом так не признался. Вообще-то вся эта история с ДНК развивалась в духе «рыцарей плаща и кинжала».

Открытие двойной спирали стало последним гвоздем, забитым в гроб витализма. Серьезные ученые, даже разделявшие религиозные взгляды, осознали, что для полного понимания жизни не потребуется открывать никаких новых законов природы. Жизнь оказалась просто делом физики и химии, хотя и совершенно филигранно организованных. Теперь перед нами стояла следующая задача: понять, как реализуется на практике заложенный в ДНК «генетический код». Как молекулярные клеточные механизмы считывают информацию из молекул ДНК? В следующей главе будет рассказано, сколь неожиданно сложным оказался такой механизм считывания и какие удивительные подсказки о возникновении самой жизни он нам преподнес.





Глава 3

Читаем код: воплощение ДНК

Задолго до того как Освальд Эвери привлек всеобщее внимание к экспериментам над ДНК в контексте «принципа трансформации генетической информации», генетики попросту пытались понять, как наследственный материал – что бы то ни было – может влиять на свойства конкретного организма. Каким образом «факторы» Менделя влияют на форму гороха, причем так, что горошины получаются либо гладкими, либо морщинистыми?

Первая подсказка появилась уже на рубеже XIX и XX веков, сразу же после того как были заново открыты работы Менделя. Английский врач Арчибальд Гаррод сделал карьеру исследователя, а не терапевта, поскольку с трудом осваивал дисциплины медицинского вуза, а также совершенно не умел тактично общаться с пациентами. Поэтому он не столько врачевал в госпитале Святого Варфоломея, сколько занимался изучением некоторых редких болезней, характерным общим симптомом которых был странный оттенок мочи. Одно из таких заболеваний, алкаптонурия, также называется «синдром черных пеленок», поскольку у страдающих этим заболеванием детей моча на воздухе темнеет. Несмотря на этот тревожный симптом, болезнь, как правило, не смертельна, хотя в зрелом возрасте и может вызывать нарушения опорно-двигательного аппарата, наподобие артрита, поскольку темные пигменты, окрашивающие мочу, накапливаются в суставах и позвоночнике. По версии медиков того времени, наличие темного пигмента было связано с бактериальной обсемененностью кишечными бактериями, но Арчибальд Гаррод настаивал на том, что черная моча появляется уже у новорожденных, пока не имеющих сформировавшуюся микрофлору, и, соответственно, эти вещества есть продукт нарушения метаболизма в организме. Гаррод предположил, что все дело в биохимическом сбое, «ошибке метаболизма», как он сам выражался. Он полагал, что здесь могут существовать критические изъяны в реализации биохимических путей.

Трехмерное изображение рибосомы, «клеточной фабрики белков». Вот она, рибосома во всей красе. В каждой клетке – миллионы рибосом. Именно в рибосомах идет сборка белков на основе информации, считываемой из ДНК, а белки – основные персонажи «биохимической драмы». Рибосома состоит из двух субъединиц, основу каждой из которых составляет молекула РНК, окруженная примерно шестьюдесятью белками. Здесь изображена рибосомальная 30S-субъединица бактериального происхождения. Атомы конкретных элементов в рибосомальной РНК окрашены в разные цвета: фосфор оранжевый, углерод серый, кислород красный, азот голубой. Транспортная РНК (тРНК), переносящая аминокислоты на рибосому, изображена в виде трубочек и окрашена в радужные оттенки (последовательно от красного и далее до оранжевого, желтого, зеленого, голубого, синего и фиолетового, от начала к концу молекулы). Матричная РНК (мРНК) также изображена в виде трубочек и окрашена в темно-синий цвет

В дальнейшем Гаррод заметил, что алкаптонурия, которая редко встречается в масштабах большой популяции, чаще поражает детей, рожденных в близкородственных браках. В 1902 году он смог объяснить этот феномен в контексте заново открытых законов Менделя. Здесь прослеживалась закономерность, характерная для наследования рецессивного гена. Допустим, двоюродные брат и сестра получают одинаковый ген алкаптонурии от общего дедушки, и возникает вероятность 1 к 4, что от их брака родится ребенок, у которого этот ген будет гомозиготным (то есть ребенок получит две копии рецессивного гена). В таком случае этот ребенок заболеет алкаптонурией. Совместив результаты биохимических и генетических анализов, Гаррод заключил, что алкаптонурия – это «врожденная ошибка метаболизма». Хотя на тот момент никто по-настоящему не понял этого вывода, Гаррод первым вывел причинно-следственную связь между генами и их физиологическими проявлениями. По его мнению, гены каким-то образом управляют обменом веществ, и генетическая ошибка, мутация, может привести к повреждению метаболического пути.