Добавить в цитаты Настройки чтения

Страница 20 из 34

Влияние мутации. При изменении единственного основания в последовательности ДНК (речь идет о гене бета-глобина человека) в белок встраивается не глутаминовая кислота, а аминокислота валин. Из-за этого единственного различия возникает серповидноклеточная анемия, при которой форма эритроцитов искажается, они приобретают характерную серповидную форму

Однако как информация, зашифрованная в ДНК – молекуле, состоящей из последовательности нуклеотидов (А, Т, Г и Ц), – позволяет собрать белок, то есть нить аминокислот?

Вскоре после того как мы с Френсисом Криком опубликовали нашу работу о двойной спирали ДНК, с нами вышел на связь знаменитый физик-теоретик Георгий Гамов, родившийся в России. Его неизменно рукописные послания, испещренные карикатурами и разными загогулинами – некоторые из них были достаточно важны, а другие не очень, – всегда были подписаны «Geo» (как нам предстояло узнать, это произносилось просто «Джо»). Он заинтересовался ДНК еще до того, как Ингрэм убедительно продемонстрировал взаимосвязь между последовательностью оснований этой молекулы и тем, какие белки синтезируются на основе ДНК. Чувствуя, что биология наконец-то превращается в точную науку, Гамов предвидел эпоху, когда организм можно будет генетически описать очень длинным числом, в котором будут присутствовать лишь цифры 1, 2, 3 и 4, каждая из которых соответствует основанию: А, Ц, Г или Т. Сначала мы приняли его за шутника и на его первое письмо не отреагировали. Через несколько месяцев Крик повстречал его в Нью-Йорке и сразу осознал, насколько это талантливый человек. Тогда мы незамедлительно пригласили Гамова в команду серьезных дээнкашников – он стал одним из нас.

Гамов переехал в США в 1934 году, спасаясь от сталинских репрессий. В 1948 году он написал статью, в которой объяснил распространенность различных химических элементов во Вселенной результатом термоядерных реакций, протекавших на ранних этапах Большого взрыва. Исследования, выполненные Гамовым и его аспирантом Ральфом Альфером, вышли бы под авторством «Альфер и Гамов», если бы Гамов не решил также указать и своего друга Ганса Бете – несомненно, в высшей степени талантливого физика, который, однако, не принимал ни малейшего участия в этих исследованиях. Просто неисправимому шутнику и любителю розыгрышей Гамову показалось забавным, что статья выйдет под фамилиями «Альфер, Бете, Гамов», да к тому же еще и 1 апреля. С тех пор космологи называют ее «αβγ» (по инициалам Альфера, Бете и Гамова).

Когда мне впервые довелось встретиться с Гамовым (в 1954 году), он уже разработал формальный метод для обозначения конкретных аминокислот перекрывающимися триплетами оснований ДНК. Он предположил схему реализации генетического кода: сборка белка происходит непосредственно на молекуле ДНК, причем каждая аминокислота помещается в ромбической выемке между четырьмя нуклеотидами, по два от каждой из комплементарных цепей. Эта схема, получившая название «бубнового кода», предполагает корреляцию между последовательными аминокислотными остатками, так как два нуклеотида всегда входят в два соседних ромба (перекрывающийся код). Я сказал Гамову, что мне эта идея не совсем нравится: ДНК не могла быть обычным шаблоном, по которому аминокислоты укладывались бы в триплеты. Я полагал, что, будучи физиком, Гамов не читал статей, опровергающих версию о синтезе белков в клеточном ядре – а ДНК расположена именно там. Действительно, если удалить из клетки ядро, это не сказывается на темпах синтеза белков. Сегодня известно, что на самом деле сборка белков из аминокислот происходит в рибосомах, мелких клеточных органеллах, где содержится иная нуклеиновая кислота – РНК.

На тот момент было неизвестно, какую именно роль играет РНК в биохимических процессах. Казалось, что у некоторых вирусов, например у вируса табачной мозаики, она ведет себя подобно ДНК, кодируя конкретные белки, специфичные для данного организма. В клетках РНК участвует в синтезе белков, поскольку в клетках, продуцирующих белки, всегда много РНК. Еще до того как мы обнаружили двойную спираль, я полагал, что генетическая информация в хромосомной ДНК, вероятно, может использоваться при сборке цепочек РНК, состоящих из комплементарных последовательностей. В таком случае РНК являлась бы промежуточным звеном между ДНК и белками. Впоследствии Френсис Крик назвал такое преобразование ДНК → РНК → белок «центральной догмой». Такая схема получила подтверждение в связи с открытием в 1959 году фермента РНК-полимеразы. Практически во всех клетках этот фермент катализирует сборку однонитчатых цепочек РНК по двунитчатому шаблону ДНК.





Оказалось, что необходимый ключ к пониманию процесса синтеза белков появится в ходе дальнейшего изучения РНК, а не ДНК. Чтобы продвинуть работу по «взлому кода» – дешифровке взаимосвязи между последовательностью оснований ДНК и аминокислотными последовательностями белков, мы с Гамовым организовали «Клуб галстуков РНК». В него допускалось всего двадцать членов – по числу аминокислот. Гамов придумал клубный галстук и даже заказал эксклюзивные галстучные булавки, каждая из которых соответствовала своей аминокислоте. У нас были служебные бейджики, каждый со стандартизированной трехбуквенной аббревиатурой аминокислоты, которую было поручено изучать обладателю этого бейджика. У меня была аббревиатура PRO (пролин), а у Гамова – ALA (аланин). В те времена было модно писать на галстучной булавке собственные инициалы, и Гамову нравилось таким образом путать окружающих. Однажды эта шутка ему аукнулась: остроглазый гостиничный клерк отказался принять у него чек, заметив, что фамилия на чеке не соответствует инициалам на булавке.

На тот момент большинство ученых, интересовавшихся расшифровкой ДНК, вполне умещались в закрытом клубе на двадцать человек – представьте, как узок был тогда мир ДНК-РНК. Гамов легко нашел в нем место для товарища-небиолога Эдварда Теллера (LEU – лейцин), а я пригласил в нашу компанию Ричарда Фейнмана (GLY – глицин), невероятно талантливого физика из Калифорнийского технологического института. Когда Фейнману наскучивало исследовать внутриатомные силы, он частенько наведывался ко мне в биологический корпус.

Один из элементов схемы Гамова, предложенной в 1954 году, обладал важным достоинством: его можно было проверить. Поскольку речь шла о перекрывающихся триплетах в составе ДНК, такая схема означала, что многие аминокислоты никогда не будут располагаться в белках бок о бок друг с другом. Поэтому Гамов с нетерпением ожидал результатов секвенирования все новых и новых белков. По мере того как обнаруживались все новые и новые пары смежных аминокислот, теория Гамова разваливалась на глазах. Окончательный крах гамовских «шифров» наступил в 1956 году, когда Сидней Бреннер (VAL – валин) проанализировал все известные на тот момент последовательности аминокислот.

Сидней Бреннер вырос в деревне близ южноафриканского города Йоханнесбурга. Семья жила в двухкомнатной пристройке к отцовской сапожной мастерской. Хотя Бреннер-старший, эмигрант из Литвы, был неграмотен, его сын-вундеркинд пристрастился к чтению уже в четырехлетнем возрасте и благодаря этому увлечению познакомился с биологией, прочитав книгу The Science of Life. Будучи взрослым, он признался, что однажды просто украл эту книгу в публичной библиотеке. Ни воровство, ни бедность не могли помешать развитию Сиднея Бреннера: в возрасте четырнадцати лет он поступил на медицинский факультет Университета Витватерсранда, а затем отправился в Оксфорд писать докторскую диссертацию. Именно в оксфордский период он наведался в Кембридж, через месяц после того как мы открыли двойную спираль ДНК. Вот как он вспоминал о своих первых впечатлениях от нашей модели: «Когда я ее увидел, мне сразу стало ясно – да, это она. И я мигом понял, насколько она фундаментальна».

Гамов был не единственным, чьи теории оказались нежизнеспособными: мне тоже довелось погоревать. Сразу же после открытия двойной спирали я отправился в Калифорнийский технологический институт: там я собирался изучить структуру РНК. Каково же было мое разочарование, когда мы с Александром Ричем (ARG – аргинин) выяснили, что при рентгеновской дифракции РНК-снимки получаются неразборчивыми: очевидно, структура молекулы была далеко не такой красивой и правильной, как у ДНК. Френсис Крик (TYR – тирозин), разочарованный не меньше нас, в начале 1955 года уведомил всех членов Клуба галстуков РНК, что структура РНК (как я и полагал) не откроет тайны превращения ДНК в белки. Напротив, Крик полагал, что аминокислоты могут доставляться к месту фактического синтеза белков так называемыми «адапторными молекулами», причем для каждой аминокислоты должна существовать «своя» молекула такого рода. Он думал, эти «адапторы» могут быть очень мелкими молекулами РНК. Два года я с ним не соглашался. А затем было сделано крайне неожиданное биохимическое открытие, показавшее, что Крик попал в самую точку.