Страница 8 из 12
Подобные конструкции применимы и для других геометрических фигур. Так, число называется треугольным, если оно может быть представлено в виде… треугольника. Первые треугольные числа: 1, 3, 6 и 10.
Последний из изображенных треугольник, состоящий из десяти точек, есть не что иное, как тетрактис, который Пифагор и его последователи считали символом космической гармонии. Аналогичным образом выделяются квадратные числа, среди которых первыми являются 1, 4, 9, 16.
Можно продолжать выделять соответствие между числами и фигурами. Геометрические изображения чисел позволили сделать наглядными определенные их свойства, которые ранее казались непостижимыми.
Например, вы никогда не пробовали сложить подряд идущие нечетные числа, один за другим: 1 + 3 + 5 + 7 + 9 + 11 + …? Нет? Тогда попробуйте, и вы заметите удивительную закономерность:
Вы обратили внимание на особенность получившегося ряда чисел? Последовательно идущие числа: 1, 4, 9, 16… Это же квадратные числа!
И вы можете еще долго выстраивать этот ряд – закономерность будет всегда верной. Попробуйте сложить нечетные числа от 1 до 19, и, если у вас хватит терпения, вы обнаружите, что получившееся число 100 – это десятое по счету квадратное число:
1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 = 10 × 10 = 100.
Удивительно, не правда ли? Но почему это именно так? Как удивительным образом получается именно такая закономерность? Можно доказать ее, используя только числа. Но есть способ еще проще. С помощью геометрического рисунка достаточно изобразить квадратные числа, как это показано ниже, и все становится очевидным.
Каждая последующая линия добавляет нечетное число шаров и тем самым увеличивает на одну единицу сторону получившегося квадрата. Доказательство просто и ясно.
Таким образом, геометрия занимала главенствующее положение в математике, и ни одна гипотеза не могла быть подтверждена без соответствующего геометрического доказательства. Гегемония геометрии продлилась намного дольше, чем сама эпоха Античности и существование греческой цивилизации. Пройдет почти две тысячи лет, прежде чем в эпоху Возрождения ученые начнут активно развивать новое направление математики, в результате чего геометрия уступит свое место новому языку: языку алгебры.
4
Время теорем
На дворе начало мая. Около двенадцати часов дня, и Солнце находится в зените над парком Ла-Виллет на севере Парижа. Прямо передо мной расположился Городок науки и техники, на входе в который находится «Жеод». Этот необычный кинотеатр, построенный в середине 1980-х, выглядит как гигантский зеркальный шар диаметром тридцать шесть метров.
Кинотеатр привлекает многочисленных туристов с фотоаппаратами в руках, которые пришли посмотреть на необычную достопримечательность Парижа. Целые семьи прогуливаются здесь в эту среду. Влюбленные пары сидят в тени деревьев и гуляют, держась за руки. Тут и там бегущие по парку люди разрезают своим движением толпы людей, которые расступаются в разные стороны, и в спешке бросают взгляд на эту необычную зеркальную сферу. Вокруг дети с интересом рассматривают искаженное изображение окружающего их мира.
Меня же интересуют в первую очередь геометрические параметры данного сооружения. Я подхожу ближе, чтобы рассмотреть его. Поверхность сферы состоит их тысяч треугольных зеркал, связанных между собой. На первый взгляд может показаться, что все элементы идеально соединены друг с другом. Но уже спустя несколько минут многочисленные отклонения становятся заметными. Вокруг некоторых точек вблизи становится очевидным, что примыкающие к ним треугольники отличаются по форме от остальных. В то время как практически все треугольники сгруппированы по шесть вокруг одной точки, есть приблизительно дюжина точек, вокруг которых находится только пять треугольников.
Изображение «Жеода» и тысяч составляющих его треугольников. Точки, вокруг которых расположено только пять треугольников, выделены темно-серым
Эти отклонения практически незаметны на первый взгляд. Большинство людей не обращают на них внимания, но вот для меня как математика в этом нет ничего удивительного. Я скажу даже более, я ожидал их найти! Архитектор не допустил ошибки – в мире существует множество других строений аналогичной конфигурации, где возле около дюжины точек группируются по пять элементов, в отличие от шести во всех остальных случаях. Эти точки являются результатом важных геометрических открытий, сделанных более чем две тысячи лет назад древнегреческими математиками.
Теэтет Афинский – древнегреческий математик, живший в IV в. до н. э., – разработал теорию правильных многогранников. В геометрии многогранник – это фигура, объем которой ограничен плоскими гранями. Так, куб и пирамида – это примеры многогранников. Шар и цилиндр, в отличие от многогранников, имеют округлую поверхность. «Жеод», состоящий из треугольников, также является гигантским многогранником, несмотря на то, что из-за большого количества элементов выглядит похожим на сферу.
Теэтет изучал также абсолютно симметричные многогранники, т. е. объемные фигуры с одинаковыми гранями. В результате его исследований был сделан неожиданный вывод: всего существует пять таких многогранников. Только пять! И не более.
Слева направо: тетраэдр, гексаэдр (куб), октаэдр, додекаэдр, икосаэдр
По сей день в математике используются исторические названия многогранников в соответствии с количеством их граней – слова с греческим суффиксом «-эдр». Так, куб, состоящий из шести квадратных граней, называется в геометрии гексаэдром. Тетраэдр, октаэдр, додекаэдр и икосаэдр состоят из четырех, восьми, двенадцати и двадцати граней соответственно. Позже они получили название «платоновы тела».
Платоновы? Но почему не теэтетовы? История зачастую несправедлива, и первооткрыватели не всегда получают причитающиеся им по заслугам почести от современников. Платон прославился не тем, что он открыл данные многогранники, но тем, что стал ассоциировать их со стихиями: огонь – с тетраэдром, землю – с гексаэдром, воздух – с октаэдром, а воду – с икосаэдром. Что же касается додекаэдра, то его античный философ ассоциировал с материей, из которой состоит сама Вселенная. Эта теория впоследствии была заброшена наукой, но спустя столетия правильные многогранники по-прежнему носят название платоновых тел.
Чтобы быть до конца откровенным, следует отметить, что и Теэтет не был первым, кто открыл пять правильных многогранников. Были найдены их еще более ранние примеры. На территории современной Шотландии обнаружена коллекция миниатюрных камушков в форме платоновых тел, созданных за тысячу лет до того, как древнегреческий математик сделал свое открытие! Эти экспонаты сегодня хранятся в музее Эшмола в Оксфорде.
Так не заслуживал ли Теэтет звания первооткрывателя больше, чем Платон? Или все же нет? Не совсем так, ведь даже если принять во внимание, что эти геометрические фигуры открыли еще до Теэтета, он был первым, кто заявил о том, что их всего пять. Бесполезно сегодня пытаться определить, кто же все-таки был первым. Это утверждение, хоть и кажется убедительным, оставляет место сомнениям. Эх! В этом весь вопрос.