Добавить в цитаты Настройки чтения

Страница 23 из 24



Принцип гомоцентрических сфер, как мы увидим в следующей главе, прекрасно вписывается в космологические идеи Аристотеля и, значит, должен был быть сохранен, поэтому Каллипп, чтобы улучшить систему, вынужден был добавить в нее больше сфер. Он считал теории Юпитера и Сатурна достаточно верными и оставил их нетронутыми, и это показывает нам, что он не осознавал эллиптическое неравенство в движении обеих планет, хотя оно может достигать величины в 5 или 6°. А вот крупные недостатки в теории Марса он постарался исправить, введя для этой планеты пятую сферу, чтобы получить ретроградное движение, не допуская при этом серьезной ошибки в синодическом периоде. Это всего лишь догадка, поскольку никто четко не говорит, почему Каллипп ввел по сфере в теории Марса, Венеры и Меркурия[89], но Скиапарелли показал, что дополнительная сфера может давать ретроградное движение без лишнего увеличения движения по широте. Пусть АОВ представляет эклиптику, причем А и В — противоположные точки на ней, которые проходят круг зодиака за сидерический период Марса. Пусть сфера (третья сфера Евдокса) совершает поворот вокруг этих точек в синодический период планеты, и пусть некоторая точка Р1 на экваторе этой сферы является полюсом четвертой сферы, которая вращается вдвое быстрее третьей в противоположном направлении, унося с собой точку Р2, которая является полюсом пятой сферы, вращающейся в том же направлении и в течение того же периода, что и третья, и уносящей планету в точке Мна ее экваторе. Легко увидеть, что если в начале движения точки Р2 и М расположены в плоскости эклиптики в порядке АР2Р1МВ, то в любой момент времени углы будут такими, как показано на рисунке, и так как АР1 = МР2 = 90°, то планета М за синодический период будет описывать фигуру, симметричную эклиптике, форма которой будет меняться в соответствии с принятой длиной дуги Р1Р2 и, подобно гиппопеде, может производить ретроградное движение. И она имеет то преимущество над гиппопедой, что может дать планете в районе точки О гораздо большую прямую и ретроградную скорость при том же движении по широте. Следовательно, она может заставить планету двигаться обратно даже в тех случаях, где гиппопеда Евдокса этого сделать не может. Таким образом, если Р1Р2 принять равной 45°, то кривая принимает показанную на рисунке форму; наибольший отход по широте составляет 4°11′, длина кривой вдоль эклиптики – 95°20′, и она имеет две тройные точки у концов, в 45° от центра. Когда планета проходит О, ее скорость в 1,293 раза больше скорости Р1 вокруг оси АВ, и, так как период вращения последней составляет 780 дней, суточное движение Р1 = 360°/780 = 0,462°, каковое число, умноженное на 1,293, дает 0,597° в качестве суточной скорости ретроградного движения на кривой в точке О. Но так как прямое движение по эклиптике точки О = 360°/686 = 0,525°, то полученное в результате суточное ретроградное движение планеты по небу равно 0,072°, что достаточно приближено к реальному движению Марса в противостоянии. Следует, однако, иметь в виду, что у нас нет возможности узнать, какое значение Каллипп предполагал для расстояния Р1Р2; но то, что введение новой сферы действительно может сделать теорию удовлетворительной, доказано исследованием Скиапарелли.

Аналогичным образом, дополнительная сфера сняла ошибки в теории Венеры. Если Р1Р2 = 45°, то максимальная элонгация равна 47°40′, что очень близко к истинной величине; также объясняется и разная скорость планеты в четырех частях синодического обращения; так как в изображенной выше кривой переход от одной тройной точки к другой занимает одну четверть периода, тот же переход назад – еще одну четверть, а очень медленное движение по маленьким петлям в конце кривой занимает оставшееся время. Что касается Меркурия, то теория Евдокса и без того была уже достаточно верна и, без сомнения, дополнительная сфера лишь ее усовершенствовала.

В солнечную теорию Каллипп ввел две новые сферы, чтобы учесть неравномерное движение Солнца по долготе, открытое примерно за сто лет до того Метоном и Евктемоном благодаря неравной продолжительности времен года. В так называемом Папирусе Евдокса, который мы уже упоминали, мы находим значения продолжительности времен года, принятые Каллиппом (взятые из парапегмы, или метеорологического календаря Гемина), и, хотя значения указываются только в целых числах дней (95, 92, 89, 90, начиная с весеннего равноденствия), в каждом случае ошибка составляет менее одного дня, притом что погрешность соответствующих значений, определенных Евктемоном около 430 года до н. э., составляет от ЕД до 2 дней. Таким образом, очевиден прогресс в наблюдениях за Солнцем в Греции, произошедший за век, который закончился около 330 года до н. э. Добавив еще две сферы к трем сферам Евдокса, Каллипп должен был лишь следовать тому же принципу, которым Евдокс объяснял неравномерность синодического движения планет, и фактически гиппопеда длиной 4° и 2′ шириной самым удовлетворительным образом дает то самое необходимое максимальное неравенство 2°. Точно так же увеличилось на две и количество лунных сфер, и, хотя Симпликий говорит о причине не очень ясно, едва ли можно сомневаться, что имеется в виду причина, аналогичная той, которую он только что привел для Солнца. Иными словами, Каллипп должен был знать об эллиптическом неравенстве движения Луны. В самом деле, вряд ли он мог его не заметить, даже если просто ограничился изучением лунных затмений, не наблюдая за движением Луны в другое время, поскольку интервалы между затмениями по сравнению с соответствующими долготами (выведенными по долготам Солнца) сразу же показывают, насколько движение Луны по долготе далеко от равномерного. Гиппопеда 12° в длину составит лишь дважды по 9′ в ширину и потому значительно не повлияет на широту, а средняя величина неравенства составит 6°. Усовершенствованная теория, таким образом, была не хуже любой другой вплоть до открытия эвекции.

Такова была усовершенствованная теория гомоцентрических сфер, разработанная Каллиппом. Можно поистине сказать, что научная астрономия берет начало от Евдокса и Каллиппа, так как здесь мы впервые встречаем то взаимное влияние теории и наблюдения, которое характерно для развития астрономии в последующие века. Евдокс первым вышел за рамки чисто философских рассуждений об устройстве Вселенной; он первым попытался систематически объяснить движения планет. И когда он это сделал, встал следующий вопрос: насколько эта теория соответствует наблюдаемым явлениям, и Каллипп сразу же предоставил факты наблюдений, необходимые для проверки теории, и изменил ее так, чтобы теоретические и наблюдаемые движения согласовались друг с другом в пределах точности, достижимой на тот момент. Отныне астрономы отказались от философских рас-суждений, не подкрепленных последовательными наблюдениями; так начался прогресс астрономической науки.

Глава 5



Аристотель

Систему гомоцентрических сфер полностью принял Аристотель (384—322 до н. э.), последний великий философ-теоретик, сыгравший заметную роль в истории древней астрономии. В отличие от Платона он искал идею в ее конкретном воплощении в явлениях природы и потому обращал внимание на все результаты опыта и наблюдений. Вследствие этой тенденции в Аристотелевой философии видеть во Вселенной систему частей, каждая из которых представляет важность для концепции целого, его труды носят несколько энциклопедический характер, охватывая все отрасли знания; но хотя они существенно более сухие и прозаичные, чем поэтические диалоги Платона, они сыграли гораздо более значительную роль в развитии науки и то же время позволяют нам ярко представить себе состояние знаний в то время, когда интеллектуальная жизнь в Греции находилась в самом своем расцвете.

89

Симпликий всего лишь говорит, что Евдем коротко и ясно изложил причины такого добавления («О небе», с. 497).