Добавить в цитаты Настройки чтения

Страница 22 из 24



За исключением Марса, эти цифры показывают, что обращения планет наблюдались довольно внимательно, и Евдокс, возможно, даже имел несколько более точные данные, так как Папирус Евдокса приводит синодический период обращения Меркурия, равный 116 дням, и это на удивление точное значение. Скорее всего, Евдокс получил его во время пребывания в Египте[88]. Если бы мы только знали наклонение, на которое опираются размеры гиппопеды, то мы смогли бы полностью восстановить все планетные теории Евдокса. Поскольку основной целью системы, разумеется, было объяснение ретроградных движений светил, Скиапарелли предположил для трех внешних планет, что величина наклонений выбрана таким образом, чтобы согласовать ретроградные дуги с наблюдаемыми. Ретроградная дуга Сатурна составляет около 6°, и с зодиакальным периодом 30 лет, синодическим периодом 13 месяцев, а также наклонением 6° между осями третьей и четвертой сферы длина гиппопеды становится 12°, а половина ее ширины, то есть наибольшее отклонение планеты от эклиптики, оказывается 9°, что было незаметно для наблюдения в те дни. Таким образом мы получаем просто ретроградное движение по долготе около 6° между двумя неподвижными точками. Точно так же, если допустить для Юпитера наклонение 13°, то длина гиппопеды становится 26°, а половина ее ширины – 44°, и с периодами 12 лет и 13 месяцев соответственно это дает ретроградную дугу около 8°. Наибольшее расстояние от эклиптики при движении по этой дуге – 44′, вероятно, в те времена было практически незаметно. Следовательно, для этих двух планет Евдокс нашел отличное решение задачи, предложенной Платоном, даже если предположить, что он знал точные длины ретроградных дуг.

Однако не так обстоит дело с Марсом, чему, по правде говоря, не следует удивляться, если вспомнить, что даже Кеплер долгое время не мог создать удовлетворительной теории для этой планеты. Не так легко понять, откуда Евдокс взял синодический период, равный 8 месяцам 20 дням (или 260 дням), в то время как на самом деле он составляет 780 дней, или ровно в три раза больше. Во всех редакциях Симпликия содержатся те же цифры, и поэтому гипотеза Ид ел ера о том, что вместо 8 месяцев следует читать 25 месяцев, представляется необоснованной, к тому же она ни в малейшей степени не проясняет дело. Ибо при синодическом периоде в 780 дней и наклонении 90° (максимальная величина, согласующаяся с описанием у Симпликия) ширина гиппопеды оказывается 60°, то есть Марс должен достигать широты 30°. Но и при этом попятное движение Марса по гиппопеде не может по скорости приблизиться к его прямому движению по зодиаку, то есть Марс вовсе не должен двигаться в обратную сторону, а лишь чрезвычайно замедлять скорость во время противостояния. Чтобы получить ретроградное движение, наклонение должно быть больше 90°; другими словами, третья и четвертая сфера должны вращаться в том же направлении. И даже это нарушение правила не имело бы никакого смысла, ведь Марс в таком случае достигал бы широт выше 30°, и Евдокс, безусловно, не был готов этого признать. С другой стороны, если принять ту величину синодического периода, которую указывает он сам, то есть 260 дней, то движение Марса по гиппопеде становится почти в три раза больше, чем раньше, и при наклонении 34° ретроградная дуга приобретает длину 16° и максимальную ширину около 5°. Такие данные находятся в удовлетворительном соответствии с реальными фактами, но, к сожалению, эта гипотеза содержит два ретроградных движения вне противостояний и четыре дополнительные точки стояния, которых в действительности не существует. Таким образом, теория Евдокса в случае Марса оказывается полностью провальной.

Что касается Меркурия и Венеры, то в первую очередь мы должны отметить, что среднее место этих планет всегда совпадает с Солнцем, так что центр гиппопеды всегда находится там же, где Солнце. Поскольку этот центр расположен в 90° от полюсов вращения третьей сферы, мы видим, что эти полюса для двух планет совпадают. Этот вывод из теории подтверждает замечание Аристотеля о том, что «по Евдоксу, полюса третьей сферы различны для некоторых планет, но одинаковы для Афродиты и Гермеса», и это предоставляет нам ценное доказательство верности выводов Скиапарелли. Поскольку наибольшая элонгация каждой из этих планет от Солнца равна половине длины гиппопеды, то есть наклонению третьей и четвертой сфер, Евдокс, несомненно, определил наклон, наблюдая за элонгацией, поскольку не мог использовать ретроградных движений, которые в случае Венеры трудно увидеть, а в случае Меркурия вне досягаемости. Если гиппопеда для Меркурия имеет длину 46°, то половина ширины или максимальная широта равна 2°14′, каковая величина почти равна наблюдаемой. Для Венеры мы можем принять длину гиппопеды 92°, что дает половину ширины 8°54′ в близком соответствии с наблюдаемой максимальной широтой. Но, как и для Марса, для Венеры невозможно ретроградное движение, и никакая иная гипотеза относительно величины наклонения не поможет избавиться от этой ошибки теории. А гораздо хуже то, что Венере в таком случае требуется одинаковое время, чтобы пройти от восточного конца гиппопеды до западного конца и наоборот, что не согласуется с фактами, так как в действительности Венера проходит от максимальной западной элонгации до максимальной восточной за 440 дней, а от восточной до западной элонгации – лишь за 143 дня, в каковом обстоятельстве очень легко убедиться. Теория столь же неудовлетворительна и для широты, так как гиппопеда пересекает эклиптику в четырех точках: в двух крайних и двойной; следовательно, Венера в течение каждого синодического периода четыре раза проходит через эклиптику, что далеко не так.

Однако при всех несовершенствах деталей система гомоцентрических сфер, предложенная Евдоксом, достойна нашего восхищения как первая серьезная попытка разобраться в, казалось бы, беспорядочном движении планет. Для Сатурна и Юпитера и практически для Меркурия система хорошо объясняла их движение по долготе, хотя и оказалась неудовлетворительной для Венеры и полностью развалилась в случае с движениями Марса. Пределы движения по широте также хорошо представлены разнообразными гиппопедами, хотя периоды фактических отклонений от эклиптики и их места в циклах оказались совсем не верны. Однако надо помнить, что Евдокс не мог иметь в своем распоряжении результатов систематических наблюдений; вероятно, в Египте он узнал основные данные о точках стояния и ретроградном движении внешних планет, а также их периоды обращения, которые, безусловно, были хорошо известны вавилонянам и египтянам, тогда как в Греции практически не велось сколько-нибудь продолжительных регулярных наблюдений. И если кто-то повторит давнюю претензию о чудовищной сложности этой системы, нужно иметь в виду, что Евдокс, как замечает Скиапарелли, в своих планетных теориях пользовался лишь тремя элементами: периодом верхнего соединения, сидерическим периодом обращения (функцией которого является синодический период) и наклоном оси третьей сферы к оси четвертой. Для тех же задач сегодня нам требуются шесть элементов!



Если же, однако, система была основана на недостаточных наблюдениях, некоторые последователи Евдокса все же, как видно, сравнили движения небесных тел, которые дает теория, с теми действительными, поскольку мы видим, что Каллипп Кизикский, ученик Евдокса, занимался тем, что совершенствовал труд своего учителя спустя три десятка лет после его первого опубликования. Каллипп также известен нам тем, что усовершенствовал солнечно-лунный цикл Метона, и это показывает, что он должен был располагать удивительно точными сведениями о продолжительности периода обращения Луны. Симпликий утверждает («О небе», с. 493), что Каллипп, который учился вместе с Полемархом, знакомым с Евдоксом, отправился вместе с Полемархом в Афины, чтобы обсудить открытия Евдокса с Аристотелем и с его помощью исправить и дополнить их. Это, по всей вероятности, произошло в правление Александра Македонского (336—323), когда Аристотель находился в Афинах. Исследования Каллиппа привели к важному усовершенствованию системы Евдокса, как пишут Аристотель и Симпликий; и так как первый ставит это в заслугу исключительно Каллиппу, представляется маловероятным, что сам он сыграл в нем какую-либо роль, хотя и от всего сердца одобрял («Метафизика», XI, 8, с. 1073 b). Каллипп написал книгу о своей планетной теории, но она была утрачена уже ко времени Симпликия, который мог сослаться только на историю астрономии Евдема, где содержалось описание теории.

88

В этом папирусе зодиакальные периоды Марса и Сатурна определены как 2 года и 30 лет, что полностью согласуется с данными Симпликия.