Добавить в цитаты Настройки чтения

Страница 9 из 15

Однако не все потеряно. На низкочастотном участке спектра абсолютно черного тела наблюдения очень хорошо согласуются с предсказаниями, основанными на классической теории и известными как закон Рэлея – Джинса. По крайней мере, классическая теория верна наполовину. Загадка в том, почему энергия колебаний на высоких частотах не является очень большой и в действительности падает до нуля, по мере того как увеличивается частота излучения.

Эта загадка привлекла внимание многих физиков последнего десятилетия XIX века. Одним из них был немецкий физик старой школы Макс Планк. Будучи трудолюбивым и основательным, Планк был по духу консерватором, а не революционером. Он питал особенный интерес к термодинамике, и самой главной его надеждой в то время было разрешить ультрафиолетовую катастрофу, применив законы термодинамики. В конце 1890-х годов было известно два приблизительных уравнения, которые вместе давали грубое выражение спектра абсолютно черного тела. Ранняя версия закона Рэлея – Джинса работала при больших длинах волн, а Вильгельм Вин предложил формулу, которая примерно соответствовала наблюдениям при малых длинах волн, а также «предсказал» длину волны, соответствующую пику кривой при любой температуре. Планк начал с исследования того, как маленькие электрические осцилляторы должны поглощать и излучать электромагнитные волны, – этот подход отличался от того, который Рэлей использовал в 1900 году, а Джинс немного позже, – но именно он привел к получению стандартной кривой, заканчивающейся ультрафиолетовой катастрофой. С 1895 по 1900 год Планк изучал эту проблему и опубликовал несколько ключевых работ, которые определили связь между термодинамикой и электродинамикой, – и все же он не мог разрешить загадку спектра абсолютно черного тела. В 1900 году он совершил прорыв, но не благодаря спокойному и взвешенному логическому подходу, а в результате удачного стечения обстоятельств: в отчаянии он смешал удачу и вдохновение с одним из использовавшихся им математических инструментов, который он, к счастью, понимал неправильно.

Конечно, никто сегодня не может точно знать, что творилось в голове Планка, когда он сделал революционный шаг, ведущий к квантовой механике, но его работа была тщательно изучена историком Мартином Кляйном из ħельского университета, который специализируется на истории физики периода рождения квантовой теории. Кляйн, вероятно, точнее всего воссоздал роли, которые сыграли Планк и Эйнштейн в этом рождении, и это ставит открытие в убедительный исторический контекст. Первый шаг, сделанный в конце лета 1900 года, не был связан с удачей и был обязан всем вдохновению талантливого физика-математика. Планк понял, что два неполных описания спектра абсолютно черного тела могут быть связаны одной простой математической формулой, которая описывала форму всей кривой, – в действительности он использовал небольшой математический фокус, чтобы свести воедино две формулы: закон смещения Вина и закон Рэлея – Джинса. Это был большой успех. Уравнение Планка прекрасно согласовывалось с наблюдениями излучения абсолютно твердого тела. Однако в отличие от двух полузаконов, на которых оно базировалось, в нем не было физической основы. И Вин, и Рэлей, и даже Планк в предшествующие четыре года пытались построить на основе разумных физических предположений теорию, которая вела бы к кривой абсолютно черного тела. Теперь же Планк вытащил правильную кривую из шляпы, и никто не знал, какие физические допущения «присутствовали» в этой кривой. Выяснилось, что они были совершенно «неразумны».

Непрошеная революция

Формула Планка была представлена публике в октябре 1900 года на собрании Берлинского физического общества. Следующие два месяца Планк пытался найти физическую основу для закона, пробуя различные комбинации физических допущений, чтобы найти те, которые бы согласовывались с математическими уравнениями. Позже он заметил, что это был самый интенсивный период работы за всю его жизнь. Многие попытки провалились, пока наконец у Планка не осталась лишь одна – менее всего желанная для него – альтернатива.





Я упоминал, что Планк был физиком старой школы, и это правда. В своих ранних работах он неохотно принимал молекулярную гипотезу и питал особенное отвращение к статистической интерпретации свойства, известного как энтропия – эту интерпретацию в термодинамику ввел Больцман. Энтропия является ключевым понятием физики, в фундаментальном смысле соотносящимся с течением времени. Хотя простые законы механики – законы Ньютона – являются полностью обратимыми во времени, мы знаем, что реальный мир другой. Представьте себе камень, брошенный на землю. Когда он падает, энергия его движения превращается в тепло. Но если мы положим такой же камень на землю и нагреем его до той же величины, он не подпрыгнет в воздух. Почему? В случае с падающим камнем упорядоченная форма движения (все атомы и молекулы падают в одном направлении) превращается в беспорядочную форму движения (все атомы и молекулы энергично и хаотично толкают друг друга). Кажется, что законы природы требуют, чтобы беспорядок всегда увеличивался, а беспорядок определяется энтропией. Этот закон является вторым законом термодинамики и утверждает, что естественные процессы всегда протекают так, что беспорядок увеличивается, то есть энтропия всегда возрастает. Если поместить беспорядочную тепловую энергию в камень, то в этом случае он не может использовать эту энергию, чтобы создать упорядоченное движение всех молекул в камне, с тем чтобы они все вместе прыгнули вверх.

Или все же может? Больцман дал различные варианты. Он сказал, что такой удивительный случай может произойти, но это крайне маловероятно. Таким же образом в результате случайного движения молекул воздуха может произойти так, что весь воздух в комнате внезапно соберется в ее углах (должно быть больше одного угла, поскольку молекулы движутся в трех пространственных измерениях). Однако опять же такая возможность настолько маловероятна, что на практике ее можно игнорировать. Планк долго и упорно выступал против этой статистической интерпретации второго закона термодинамики, делая это как публично, так и в переписке с Больцманом. Для него второй закон был окончателен: энтропия должна постоянно возрастать, и вероятности не вписываются в эту картину. Поэтому несложно представить, как, должно быть, чувствовал себя Планк ближе к концу 1900 года, когда, исчерпав все остальные варианты, он неохотно попробовал внедрить в свои расчеты спектра абсолютно черного тела статистическую версию термодинамики Больцмана и обнаружил, что она сработала. Однако ситуация оказалась еще комичнее: плохо знакомый с уравнениями Больцмана, Планк применил их непоследовательно. Он получил верный ответ неверным способом, и истинное значение работы Планка стало очевидно только тогда, когда в дело вступил Эйнштейн.

Стоит особо отметить, что большим шагом вперед в науке стало уже то, что Планк установил, что статистическая интерпретация возрастания энтропии Больцмана является лучшим описанием реальности. Из работы Планка стало ясно, что нет никаких сомнений в том, что возрастание энтропии хотя и очень вероятно, но не гарантировано. Это имеет интересные следствия для космологии, изучающей Вселенную в целом, в которой мы сталкиваемся с большими промежутками во времени и пространстве. Чем больше область, которую мы рассматриваем, тем больше там возможностей для того, что произойдут маловероятные события. В принципе даже возможно (хотя и весьма маловероятно), что целая Вселенная, которая является упорядоченным местом, в общем и целом представляет собой некий вид термодинамической статистической флуктуации – очень большого и редкого всплеска, создавшего зону низкой энтропии, которая сейчас разрушается. Однако «ошибка» Планка приоткрыла кое-что еще более фундаментальное о природе Вселенной.

Статистический подход Больцмана к термодинамике предполагал математическое разделение энергии на куски, рассматривавшиеся как реальные величины, к которым можно было применить уравнения теории вероятности. Перед этим этапом вычислений энергия разделялась на порции, которые на более поздней стадии необходимо было сложить воедино (интегрировать), чтобы получить полную энергию – в этом случае энергию, соответствующую излучению абсолютно черного тела. Впрочем, на полпути Планк понял, что у него уже есть математическая формула для того, что он хотел получить. Перед тем как Планк приступил к стадии интегрирования кусков энергии обратно в единое целое, уравнение абсолютно черного тела уже было получено. И он взял его. Это был весьма радикальный шаг, который ничем не оправдан с точки зрения классической физики.