Страница 6 из 15
По иронии судьбы эта научная статья была опубликована на немецком (в журнале «Анналы физики»), хоть она и противоречила суждениям ведущих немецких физиков, включая Эрнста Маха и Вильгельма Оствальда, которые, казалось, убедили Больцмана в том, что он был одиночкой в пустыне. В действительности к началу XX столетия было множество свидетельств реальности существования атомов, даже если учесть, что, строго говоря, эти свидетельства могли считаться лишь частными. Британские и французские физики поверили в атомную теорию гораздо сильнее, чем многие их немецкие оппоненты. Именно англичанин Дж. Дж. Томсон в 1897 году открыл электрон, который, как мы сегодня знаем, является одним из компонентов атома.
Электроны
В конце XIX века было много противоречий касательно природы излучения, исходящего от вакуумной трубки, по которой идет электрический ток. Эти катодные лучи, как их назвали, могли быть либо формой излучения, испускаемого колебаниями эфира, однако отличались от света и недавно открытых радиоволн, либо потоком крошечных частиц. Большинство немецких ученых поддержали идею эфирных волн. Большинство британских и французских ученых считали, что катодные лучи представляют собой частицы. Ситуация усложнилась, когда в 1895 году Вильгельм Рентген случайно открыл рентгеновские лучи (в 1901 году за это открытие Рентген получил первую в истории Нобелевскую премию по физике). Однако это не относилось напрямую к проблеме. Важным было то, что это быстрое открытие произошло до того, как был развит теоретический аппарат атомной физики, в который бы вписывались рентгеновские лучи. Мы встретимся с ними чуть позже в более подходящем контексте.
В 1870-х годах Томсон занимал должность первого в истории профессора физики Кавендишской лаборатории – основанного Максвеллом научного центра в Кембридже. Он разработал эксперимент, который основывался на уравновешивании электрических и магнитных свойств движущейся и заряженной частицы[4]. Траектория такой частицы может отклоняться как магнитным, так и электрическим полем, и прибор Томсона был сконструирован таким образом, что эти два эффекта нивелировали друг друга, так что оставался лишь пучок катодных лучей, двигавшихся напрямую от отрицательно заряженной металлической пластины (катода) к экрану детектора. Этот трюк работает только для электрически заряженных частиц, поэтому Томсон установил, что катодные лучи на самом деле являются отрицательно заряженными частицами (теперь называемыми электронами). Он смог использовать уравновешивание электрических и магнитных сил, чтобы рассчитать отношение электрического заряда электрона к его массе (е/m). Какой бы металл ни использовался в качестве материала для катода, Томсон всегда получал один и тот же результат и сделал вывод, что электроны являются частью атомов и что, хотя различные элементы состоят из различных атомов, все атомы содержат одинаковые электроны.
Это было не случайное удачное открытие, как открытие рентгеновских лучей, а итог аккуратного планирования и мастерских экспериментов. Кавендишскую лабораторию создал Максвелл, но именно под руководством Томсона она стала лидером в экспериментальной физике и, возможно, лидирующей физической лабораторией в мире, и принесла множество открытий, которые в XX веке привели к новому пониманию физики. Кроме самого Томсона, Нобелевскую премию получили еще семь человек, работавших с ним в лаборатории до 1914 года. Кавендишская лаборатория и в наши дни остается мировым центром физики.
Ионы
Катодные лучи, которые двигались по вакуумной трубке от отрицательно заряженной пластины, оказались отрицательно заряженными частицами, электронами. Атомы, однако, электрически нейтральны, а потому логично, что существуют и позитивно заряженные противоположности электронов – атомы, у которых отняли часть отрицательного заряда. В 1898 году Вильгельм Вин из университета Вюрцбурга впервые изучил эти положительные лучи, выяснив, что частицы, из которых они состоят, значительно тяжелее электронов, как будто бы это были атомы, которым просто не хватало электрона. Завершив эксперименты с катодными лучами, Томсон решил исследовать эти положительные лучи в серии сложных экспериментов, которые продолжались и в течение 1920-х годов. Сегодня эти лучи называются ионизированными атомами, или просто «ионами», а во времена Томсона их называли каналовыми лучами, потому что он изучал их, используя модифицированную трубку для катодных лучей, в которой вакуумный насос оставлял небольшое количество газа. Электроны, двигавшиеся сквозь этот газ, вступали во взаимодействие с его атомами и выбивали из них другие электроны, оставляя положительно заряженные ионы, на которые можно было оказывать воздействие при помощи электрического и магнитного полей таким же образом, как Томсон оказывал воздействие на сами электроны. К 1913 году группа Томсона произвела измерения отклонения положительно заряженных ионов водорода, кислорода и других газов. Одним из газов, которые Томсон использовал в этих опытах, был неон. Неон, через который проходит электрический заряд в вакуумной трубке, ярко вспыхивает, и аппарат Томсона стал предшественником современной неоновой трубки. Но его открытие было гораздо важнее, чем изобретение нового способа рекламы.
В отличие от электронов, которые имеют одно и то же отношение заряда к массе е/т, существует три различных типа ионов неона, которые имеют такой же заряд, как и электрон, однако не отрицательный (—е), а положительный (+е), но разные массы. Это стало первым свидетельством того, что химические элементы часто включают в себя атомы с разной массой (разной атомной массой), но одинаковыми химическими свойствами. Теперь такие варианты элементов называют «изотопами», но объяснение их существования смогли обнаружить лишь гораздо позже. Однако Томсон уже тогда располагал достаточным объемом информации, чтобы сделать первый шаг к описанию внутренней структуры атома, который был не неделимой основной частицей, как полагали некоторые древнегреческие философы, а совокупностью положительных и отрицательных зарядов, из которой можно вырывать электроны.
Томсон представил атом как своего рода арбуз – относительно крупную сферу, по которой был распределен весь положительный заряд и куда были, подобно семечкам, внедрены маленькие электроны, каждый из которых нес в себе частицу отрицательного заряда. Как выяснилось, он ошибался, но он предоставил ученым мишень для стрельбы – и постоянные тренировки привели их к более точному пониманию структуры атома. Чтобы узнать, как именно это произошло, нам нужно отступить на шаг назад в историю науки, а затем сделать два шага вперед.
Рентгеновские лучи
Ключевым открытием для понимания структуры атома стало совершенное в 1896 году открытие радиоактивности. Как и обнаружение рентгеновских лучей, состоявшееся несколькими месяцами ранее, оно произошло по счастливому стечению обстоятельств, хотя в обоих случаях это счастливое стечение обстоятельств не могло не произойти в какой-нибудь физической лаборатории того времени. Как и многие физики в 1890-х годах, Вильгельм Рентген экспериментировал с катодными лучами. Когда эти лучи – электроны – сталкиваются с материальным объектом, в результате их столкновения происходит вторичное излучение. Это излучение невидимо, можно заметить только его воздействие на фотографическую пластинку или пленку либо на аппарат, называемый флуоресцентным экраном, который искрится, принимая на себя излучение. Случилось так, что во время проведения опытов с катодными лучами на столе в лаборатории Рентгена лежал такой экран, и ученый сразу заметил, что экран вспыхивал при работе отводящей трубки в опыте с катодными лучами. Это привело его к открытию вторичного излучения, которое он обозначил как «икс», ведь икс обычно используется в математических уравнениях в качестве неизвестной. Вскоре выяснилось, что рентгеновские лучи ведут себя, как волны (теперь мы знаем, что они представляют собой особую форму электромагнитного излучения и очень похожи на световые волны, но при этом длина этих волн значительно короче), и это открытие, сделанное в немецкой лаборатории, помогло подтвердить мнение большинства немецких ученых о том, что катодные лучи, должно быть, тоже являются волнами.
4
Слово «разработал» является наиболее подходящим в данном контексте. Дж. Дж. Томсон пользовался дурной славой неряхи и планировал блистательные эксперименты, которые выполняли другие. Считается, будто его сын Джордж говорил, что, хотя Дж. Дж. (как все его называли) «мог определить недостатки устройства с непревзойденной точностью», это полностью лишало его возможности «исправить проблему самому». (См.: Барбара Ловетт Кляйн, «Вопрошающие», с. 13.)