Добавить в цитаты Настройки чтения

Страница 11 из 12



В физиологии спорта в качестве основного критерия выносливости спортсмена используется величина максимального потребления кислорода (МПК) как интегральный показатель функциональных систем организма. Величина МПК характеризует мощность аэробного процесса и зависит в основном от двух факторов: функции кислородтранспортной системы и способности работающих скелетных мышц усваивать кислород. При тренировке на выносливость у бегунов и лыжников минутный объем крови резко возрастает, что увеличивает доставку мышцам кислорода и его потребление до 5,0–6,0 л/мин. Это и есть величина МПК. Для спортсменов циклических видов спорта, потенциальных призеров мировых первенств, МПК не должно быть меньше 80 мл/кг/мин. Такой высокий уровень потребления кислорода достигается при ЧСС около 200 уд./мин и при легочной вентиляции до 180–200 л/мин.

Характер интеграции звеньев сложного процесса обеспечения организма кислородом зависит, в известной мере, от структуры и интенсивности выполняемой работы, а также от индивидуальных особенностей механизма адаптации вегетативных систем организма к мышечной деятельности. Поэтому при изучении аэробной выносливости организма значительный интерес представляет динамика соотношений различных функций во время физической деятельности и в фазе восстановления. Выделяются три варианта реакции при выполнении нагрузки на велоэргометре. Первый вариант характеризуется адекватными реакциями со стороны дыхания и гемодинамических показателей. Второй вариант – компенсаторный, при котором одна из функций отражает реакцию напряжения системы регуляции. Третий вариант характеризуется выраженной дискоординацией исследуемых функций.

Восстановление показателей внешнего дыхания и кровообращения после стандартных физических нагрузок происходит неодновременно: определяется четкий гетерохронизм во времени.

Особенно существенное влияние на изменения величины интервалов отдыха оказывает период тренировки спортсмена. Сокращение интервалов между восстановлением показателей функции внешнего дыхания и кровообращения после физической нагрузки соответствует нарастанию тренированности спортсменов. При развитии явлений перетренированности, а также при форсированном возобновлении тренировок после заболеваний степень гетерохронизма возрастает за счет более позднего восстановления показателей внешнего дыхания.

Основными процессами, обеспечивающими клетку энергией, являются аэробный и анаэробный этап дыхания. С кровью кислород проникает в митохондрии клетки, где вступает в многоступенчатую реакцию с различными питательными веществами: белками, углеводами, жирами и др. Этот процесс называется клеточным дыханием. В результате выделяется химическая энергия, которую клетка запасает в АТФ. Это универсальный накопитель энергии, которую организм тратит на рост, движение, поддержание своей жизнедеятельности.

Энергетическими источниками для образования АТФ в скелетных мышцах являются креатинфосфатная кислота (КрФ), углеводы, жиры, белки.

Выделяют четыре механизма образования АТФ в тканях, каждый из которых имеет свои метаболические и биоэнергетические особенности. В энергообеспечении используются различные механизмы зависимости от интенсивности и длительности выполняемого упражнения. В скелетных мышцах выявлены три анаэробные и один аэробный пути образования АТФ.

Аэробный механизм образования АТФ включает реакции окислительного фосфорилирования, протекаемые в митохондриях.

Аэробный механизм ресинтеза АТФ в обычных условиях обеспечивает около 90 % общего количества АТФ, ресинтезируемой в организме. Ферментные системы аэробного обмена расположены в основном в митохондриях мышц. Механизм аэробного окисления питательных веществ носит название «окислительное фосфорилирование».

В качестве продуктов аэробного окисления используются глюкоза, высшие жирные кислоты, отдельные аминокислоты, кетоновые тела, молочная кислота и другие недоокисленные продукты метаболизма. Все эти вещества постепенно превращаются в единое вещество – ацетил-КоА, который окисляется в цикле лимонной кислоты до конечных продуктов диоксида углерода и воды с участием многочисленных окислительных ферментов и кислорода, доставляемого к тканям гемоглобином эритроцитов крови, а в скелетных мышцах – с участием кислорода, накапливаемого белком миоглобина. Скорость образования АТФ в процессе окислительного фосфорилирования зависит от следующих факторов:

• соотношения АТФ/АДФ (при отсутствии в клетке АДФ синтез АТФ не происходит);

• количества кислорода в клетке и эффективности его использования;

• активности многочисленных окислительных ферментов;



• количества систем дыхательных ферментов в митохондриях;

• целостности мембран митохондрий;

• количества митохондрий в клетке;

• концентрации гормонов, регуляторов процесса аэробного окисления веществ.

Снижение концентрации АТФ, наблюдаемое сразу после начала выполнения интенсивной физической нагрузки, активирует дыхательную и сердечно-сосудистую системы, доставляющие кислород к клеткам.

Количество кислорода, потребляемого легкими, прямо пропорционально количеству кислорода, используемому в процессах окислительного фосфорилирования. Это позволяет определять величину аэробного энергообразования по поступлению кислорода. Нормализация частоты дыхания и ЧСС происходит только после удовлетворения повышенных потребностей клеток в АТФ.

При потреблении одинакового количества кислорода объем выполненной работы станет бо льшим в том случае, если энергетическим субстратом будут углеводы, а не жиры. Углеводы являются более эффективным «топливом» по сравнению с жирами, так как на их окисление требуется на 12 % меньше кислорода в расчете на молекулу синтезированной АТФ. Поэтому в условиях недостаточного количества кислорода при физических нагрузках энергообразование происходит в первую очередь за счет окисления углеводов. Поскольку запасы углеводов в организме ограничены, ограничена и возможность их использования в видах спорта, требующих проявления общей выносливости. После исчерпания запасов углеводов к энергообеспечению работы подключаются жиры, запасы которых позволяют выполнить очень длительную работу. Учитывая, что жирные кислоты содержат большое количество энергии, весьма важно развивать способность организма спортсмена к более ранней их мобилизации для энергообеспечения работы. Для этого рекомендуется периодически применять в тренировке аэробные нагрузки. В качестве продукта окисления могут использоваться и белки, которые распадаются на аминокислоты, способные превращаться в глюкозу или другие метаболиты аэробного процесса окисления. Однако вклад белков в образование энергии при мышечной деятельности составляет всего 5-10 %.

Мощность аэробного энергообразования оценивается по величине максимального потребления кислорода (МПК), достигнутого при выполнении мышечной работы. У спортсменов эта величина составляет в среднем 5,5–6 л/ мин, а у не занимающихся спортом – 2,5–3,5 л/мин. Поскольку она отражает скорость потребления кислорода в работающих мышцах, а на скелетные мышцы приходится большая часть активной массы тела, то в целях сравнения аэробных способностей разных людей величину МПК обычно выражают в расчете на 1 кг массы тела. У молодых людей, не занимающихся спортом, МПК составляет 40–45 мл/кг/мин, у спортсменов в видах спорта на выносливость – 80–90 мл/кг/мин.

Максимальная мощность аэробного процесса достигается на 2-3-й минутах неинтенсивной работы и может поддерживаться до 15-30-й минуты. В более длительных упражнениях она постепенно уменьшается.

Наиболее интенсивно протекают процессы аэробного энергообразования в медленносокращающихся мышечных волокнах. Следовательно, чем выше процентное содержание таких волокон в мышцах, несущих основную нагрузку при выполнении упражнения, тем больше максимальная аэробная мощность у спортсменов и тем выше физическая работоспособность при продолжительной работе.

Метаболическая емкость аэробного механизма практически безгранична, поскольку имеются большие запасы энергетических источников, дающих большое количество образования АТФ. Так, при окислении 1 молекулы глюкозы в аэробных условиях образуется 38 молекул АТФ, тогда как в анаэробных – только 2 АТФ, а при окислении высших жирных кислот образуется еще больше энергии – 130 АТФ.