Добавить в цитаты Настройки чтения

Страница 10 из 12



Во время физической нагрузки для терморегуляции и деятельности сердечно-сосудистой системы большое значение имеет баланс жидкости. Вначале вода перемещается из крови во внутриклеточное пространство и начинается процесс потоотделения. В результате этих действий мышца накапливает воду за счет объема плазмы. Пониженный объем плазмы приводит к снижению артериального давления и кровоснабжения мышц, что уменьшает работоспособность. Эндокринная система регулирует этот процесс с помощью двух гормонов: альдостерона (надпочечники) и антидиуретического – вазопрессина (гипофиз). Мышечная деятельность приводит к потоотделению. Оно, в свою очередь, ведет к уменьшению объема плазмы и кровоснабжения почек. Понижение кровоснабжения почек стимулирует выделение из них фермента ренина, который вызывает образование ангиотензина и стимулирует выделение альдостерона (надпочечники), повышая обратное всасывание натрия и воды из почечных канальцев. В результате объем плазмы увеличивается. Антидиуретический гормон (гипофиз) выделяется в ответ на увеличение концентрации растворенных в крови веществ.

Во время физической нагрузки перемещение воды из плазмы повышает концентрацию крови. Этому способствует и потоотделение. Концентрированная плазма достигает гипоталамуса, который стимулирует гипофиз на выделение антидиуретического гормона. Последний обеспечивает обратное всасывание воды в почки и, следовательно, ее задержку в организме, что приводит к восстановлению нормального объема плазмы и артериального давления. Воздействие альдостерона и антидиуретического гормона продолжается от 12 до 48 ч после завершения физической нагрузки. Они направлены на снижение образования мочи и дальнейшую защиту организма от обезвоживания. После нагрузки в организме увеличена концентрация натрия, и чтобы уменьшить ее, организм перемещает больше воды во внеклеточные пространства.

Для повышения количества гемоглобина, необходимого для улучшения аэробного компонента выносливости, почки выделяют гормон эритропоэтин, который способствует увеличению образования эритроцитов.

После окончания тренировки в гипоталамусе начинают вырабатываться статины, которые тормозят синтез гормонов, участвующих в тренировочном процессе, и стимулируют образование эндорфинов. Они осуществляют обезболивание мелких травм, регулируют температуру тела, кровяное давление, формируют положительные эмоции.

Адаптация мышечного аппарата к физическим нагрузкам связана в первую очередь с изменениями мышечных волокон:

1) увеличивается толщина мышечных волокон;

2) повышается количество миоглобина, благодаря чему возрастает запас кислорода в мышце;

3) увеличивается число капилляров, что улучшает снабжение кровью мышечных клеток, особенно при работе на аэробный компонент выносливости;

4) улучшается внутримышечная координация, в мышечное напряжение может одновременно втягиваться все больше и больше мышечных волокон.

Мышцу пронизывает широко разветвленная сеть кровеносных капилляров. По ним поступают всевозможные вещества, необходимые для работы мышц, для строительства новых клеток и удаления продуктов распада.



Существуют три вида мышц: скелетные поперечнополосатые, сердечная поперечнополосатая и гладкие, которые различны по строению и физиологическим свойствам. Основными в развитии физической работоспособности дзюдоистов являются скелетные поперечнополосатые мышцы.

Скелетные поперечнополосатые мышцы вместе со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и выполнение всех технико-тактических действий дзюдоистов. Скелетные мышцы состоят из мышечных волокон, которые объединяются в мышечные пучки. Каждое мышечное волокно имеет оболочку (сарколемму) и цитоплазму (саркоплазму). В саркоплазме сосредоточены все компоненты животной клетки. Вдоль оси мышечного волокна расположены тонкие нити – миофибриллы, а в них – протофибриллы, нити белков миозина и актина. Они являются сократительным аппаратом мышечного волокна. Механизм мышечного сокращения связан с взаимодействием актина и миозина. Скелетным мышцам присущи: возбудимость, проводимость, упругость, растяжимость, эластичность, пластичность. Возбуждение мышцы внешне проявляется в сокращении. В ответ на одиночное раздражение мышца производит одиночное сокращение. На серию импульсов мышца отвечает длительным сокращением. Оно называется тетаническим, или длительным сокращением. Различают гладкий тетанус, который возникает при частых ритмах раздражения, и зубчатый тетанус, появляющийся при редких ритмах раздражения.

Сокращение мышцы при постоянной нагрузке, сопровождающееся одним и тем же напряжением, называется изотоническим. Сокращение мышцы, когда она развивает силу, но не может укорачиваться из-за чрезмерной нагрузки, – изометрическим. Сократительная деятельность различных групп мышц очень разнообразна. Их согласованная деятельность обусловливает движение тела, а всякое движение вызывается сокращением большого количества мышц. Основная деятельность скелетных мышц связана с обеспечением технической подготовки спортсмена и осуществляет свою сократительную способность в связи с определенными приспособительными реакциями.

Отдельная скелетная мышца включает два основные типа волокон: медленно сокращающиеся (МС) и быстро сокращающиеся (БС). Чтобы достичь пика напряжения, при стимулировании медленно сокращающимся волокнам требуется 110 мс, а быстро сокращающимся – около 50 мс.

Быстро сокращающиеся волокна в свою очередь подразделяются на быстро сокращающиеся волокна типа «а» (БСа) и быстро сокращающиеся волокна типа «б» (БСб). Медленно сокращающиеся волокна окрашены в темный цвет. Быстро сокращающиеся волокна типа «а» не окрашены, а типа «б» имеют серую окраску. Вместе с тем считается, что волокна типа «а» редко используются при мышечной деятельности человека, а МС-волокна – чаще. Реже всего задействованы БС-волокна типа «б». В среднем мышцы состоят на 50 % из МС- и на 25 % из БС-волокон типа «а», остальные 25 % составляют главным образом БС-волокна типа «б».

Название МС- и БС-волокон обусловлено различиями в скорости их действия, осуществляемого разными формами миозин-АТФ-азы – фермента, расщепляющего АТФ для образования энергии, необходимой для выполнения сокращения или обеспечения расслабления. МС-волокна имеют медленную форму АТФ-азы, БС – быструю. В ответ на нервную стимуляцию АТФ быстрее расщепляется в БС, чем в МС-волокнах. Вследствие этого первые быстрее получают энергию для выполнения сокращения, чем вторые.

Для БС-волокон характерен более высокоразвитый саркоплазматический ретикулум (СР). Поэтому БС-волокна способны доставлять кальций в мышечные клетки при их активации. Считают, что именно эта способность обусловливает более высокую скорость действия БС-волокон.

Двигательная единица – это отдельный мотонейрон и мышечные волокна, которые он иннервирует. Таким образом, нейрон определяет, являются ли волокна медленно или быстро сокращающимися. Мотонейрон в МС двигательной единице имеет небольшое клеточное тело и иннервирует группу из 10-180 мышечных волокон. У мотонейрона в БС двигательной единице большое клеточное тело и больше аксонов, и он иннервирует от 300 до 800 мышечных волокон. Отсюда следует, что каждый МС-мотонейрон в состоянии активировать значительно меньшее количество мышечных волокон в противоположность БС-мотонейрону. При этом необходимо отметить, что сила, производимая отдельными МС- и БС-волокнами по величине отличается незначительно. МС- и БС-волокна имеют разные функции во время физической активности. МС-волокнам присущ высокий уровень аэробной выносливости, они эффективны в производстве АТФ на основе окисления углеводов и жиров и более приспособлены к выполнению длительной работы невысокой интенсивности. Быстро сокращающиеся мышечные волокна приспособлены к анаэробной деятельности (без кислорода), и при их работе АТФ образуется благодаря анаэробным реакциям. Б С двигательные единицы производят большую силу, однако легко устают ввиду ограниченной выносливости и используются главным образом при выполнении кратковременной работы высокой интенсивности.