Добавить в цитаты Настройки чтения

Страница 5 из 43



Как видно, вся соль динамики - в этих самых силах. То есть, зная, какие силы и от чего действуют на многострадальное подвергнутое подсчётам туловище, можно точно сказать, будет оно двигаться или нет. Только сила - это тоже векторная штуковина. Более того, одна действующая сила никак не зависит от всех остальных. Поэтому способ считать такой: векторно складывать все силы и смотреть, что из них получится. Если ноль - значит, изменений не будет. Если не ноль - то будут в ту сторону, в которую получается направлен результат.

Вкратце и поумнее: основные законы динамики - законы Ньютона. Первый: существуют инерциальные системы отсчёта, относительно которых тело движется с нулевым ускорением или покоится, если сумма сил, действующих на него, равна нулю. Второй: ускорение, сообщаемое телу при действии на него силой, прямо пропорционально силе и обратно пропорционально массе. Масса - мера инертности тела, инертность - способность тела сохранять движение (или не движение) с нулевым ускорением. Единица измерения массы - килограмм. Плотность - мера распределения массы в объёме: отношение массы тела к объёму, в котором эта масса сосредоточена. Единица измерения плотности - килограмм на метр кубический. Сила - мера, характеризующая воздействие на тело. Единица измерения - ньютон (Н). 1 Н = 1 кг*м/(c^2). Третий закон Ньютона: тела действуют друг на друга с силами, направленными вдоль одной линии, равными по модулю и противоположными по направлению. Сила, действующая на тело, не зависит от других сил, поэтому результат действия всех сил получается в виде векторного сложения всех сил, действующих на тело.

Дальше начинается, наверное, самая скучная и нудная часть динамики. Есть несколько основных сил, которые могут действовать на тело. Они все были давно посчитаны и проверены, после чего ими начали грузить на уроках физики в школе для решения очередных тонн задач. Вот эти силы:

1) Сила всемирного тяготения. (Эпичное названьице, однако.) Частный случай - сила тяжести.

2) Сила упругости.

3) Сила реакции опоры.

4) Сила трения.

5) Вес. Да, это тоже сила. В физике масса и вес - это не одно и то же.

Теперь поподробнее (и постараюсь попонятней) о каждой.

1) Всемирное тяготение.



Эта штука обязана своему появлению всё тому же Ньютону. Он решил, что все тела в той или иной степени притягиваются друг к другу. Причём не отчего-то, а просто потому, что у них есть массы. Чтобы подкрепить это предположение математикой, пришлось копать аж вплоть до космоса, где планеты и звёзды тоже притягиваются друг к другу. В итоге получилась заумная формула, полученная чисто из наблюдений без всяких страшных математических выкладок: F = G*m1*m2 / (R^2). Буквы расшифровываются так: F - сила, G - цифирь под названием "гравитационная постоянная", составляет 6.67*10^-11 Н*м^2/(кг^2), m1 - масса первого тела, m2 - масса второго тела, R - расстояние между ними.

И сразу возникает куча непоняток и вопросов. Почему тогда я прямо сейчас не притягиваюсь мордой лица к экрану монитора? Почему тогда вообще вся аппаратура и мебель в комнате не хочет притягиваться друг к другу в один клубок? Почему еда вместе с ложкой сами не притягиваются к голове и рту? И, наконец, вопрос от умничающих людей в очках, ставящих оценки учащимся: а можно ли эту формулу применять для всех случаев, что я описал? Как считать, например, расстояние между мордой лица и монитором? Откуда и докуда? Они же тоже размеры имеют, и из-за этого расстояние может быть разным! Какое именно из расстояний брать - от кончика носа до экрана, от макушки до шарнира экрана, откуда-нибудь из центра головы (можно ли посчитать, где он находится?..) до центра экрана (тот же вопрос)?..

Пока не успели закидать тухлыми помидорами и прочими шарообразными предметами, сразу ответ. Строго говоря, для тел и туловищ заумных форм этот закон не подходит - именно из-за упомянутого возражения умничающих: неточность в расстоянии. Но здесь на помощь приходит одно из самых первых понятий - материальная точка. Вот если смотреть на лицо и монитор совсем-совсем издалека, так, что они будут казаться точками, тогда и расстояние между ними будет однозначно определено. И, к тому же, для тех же помидоров закон тоже сгодится - они шарообразной формы и равномерно заполнены. В этом случае расстояние между ними - это расстояние между их центрами. Планеты и звёзды тоже с натяжкой можно считать равномерно заполненными шарами, так что и для них это тоже годится.

Наконец, вопрос, возникающий по здравому смыслу: почему тогда всё подряд друг к другу не липнет? Ответ простой. Сила-то есть, только она настолько маленькая, что не ощущается. Для примера: два бильярдных шара для игры в пул, максимальная масса - 170 г (0.17 кг). Пускай (я фантазирую) они стоят совсем впритык: 1 мм расстояние (это 0.001 м, или 10^-3 м). Получаем: 0.17*0.17/10^-6 = 0.289*1000000 = 289000 = 2.89*10^5 кг^2/(м^2). Это не в ньютонах! Потому что нужно ещё домножить на G. А эта цифирь составляет вот сколько: 6.67*10^-11 Н*м^2/(кг^2). Итого получается, сила составляет 19.2763*10^-6 Н, то есть примерно 1.9*10^-5 Н. В минус пятой степени - это примерно 2 десятитысячных дольки! Это настолько маленькая сила, что её действие будет просто незаметно. И то я слишком занизил расстояние - радиус шара составляет 5.175 см, то есть расстояние никак не может быть меньше, чем 10.35 см - а в этом случае сила будет ещё меньше, причём ещё раз в 10 000! (10 см больше 1 мм в 100 раз, но расстояние у нас берётся в квадрате и находится в знаменателе - значит, сила будет в 100*100 = 10 000 раз меньше.)

Собственно, всё именно из-за этого маленького значения G. Зато если взять хотя бы одно тело с действительно большой массой, а второе поставить на маленьком расстоянии от его поверхности, то сила уже будет ощутима. Собственно, если это "одно тело" - наша планета Земля, а второе - мы, то это и будет та самая сила тяжести, в сторону которой начал копать Ньютон, когда ему на голову упало это несчастное яблоко. И именно из этой формулы получилось то самое g (маленькое) - ускорение свободного падения. Если подставить массу Земли - 5.9742*10^24 кг и расстояние от центра Земли до центра тела - при маленьких высотах это будет примерно равно радиусу Земли - 6378.1 км, домножить на G, а вторую массу оставить как букву, то и получится F = m*g. Автоматически следует и очевидный факт: сила тяжести направлена всегда к центру Земли - в простонародии, вниз.

Забегая далеко-далеко вперёд (практически в самый конец), гравитационное взаимодействие - самое слабое из всех известных взаимодействий в физике. И забегая уже едва ли не за пределы всей физики в целом: в других взаимодействиях есть похожая сила, которая может и притягивать, и отталкивать. А в гравитации мы видим, что есть только притяжение. А куда делось отталкивание, есть ли оно вообще и как его добиться? Этот вопрос остаётся едва ли не только в мыслях научных фантастов, и называют это "антигравитацией".

Вкратце и поумнее: сила всемирного тяготения обусловлена взаимным притяжением всех тел друг к другу. Сила этого притяжения рассчитывается по формуле F = G*m1*m2/(R^2), где F - сила, G - гравитационная постоянная (6.67*10^-11 Н*м^2/(кг^2)), m1 и m2 - массы первого и второго тел соответственно, R - расстояние между телами (если их можно рассматривать как материальные точки) или расстояние между их центрами (если тела - равномерно заполненные шары). Для остальных форм тел эта формула не применяется. В случае, если в виде первого тела выступает Земля, а второе тело гораздо меньше по размерам и находится близко к поверхности, формула превращается в F = m*g, где g - ускорение свободного падения у поверхности Земли (те самые 9.8 м/(c^2)), и сила называется силой тяжести. Направлена к центру Земли.

2) Упругость.

С силой упругости гораздо проще, не надо представлять себе никаких планет, Вселенных, чёрных дыр и тому подобных непонятных субстанций. Достаточно взять простую пружину и согнуть её, а потом отпустить. Оба свободных конца заставят руки разжаться. Это и есть сила упругости - она возникает при деформации тела; проще говоря, при нарушении его естественной формы. Это вносит своеобразный дискомфорт, и тело (пружина) стремится вернуться в первоначальное, "удобное для себя" положение, попутно задевая всё, что находится рядом. Если объяснять, а с чего вообще пружине вдруг распрямляться - может, ей и так, в согнутом состоянии, хорошо - придётся забежать немного вперёд, поэтому я к этому вернусь несколько позже (здесь же, в механике).