Добавить в цитаты Настройки чтения

Страница 31 из 86

— Каким образом?

— В своём сочинении «Исследование законов мысли» Буль записал логические рассуждения математическими формулами. Так возникла булева алгебра логики.

— Но кому она нужна? — недоумевал Сева. — Не понимаю.

— Не только ты — многие не понимали. Слишком уж умозрительна была эта булева алгебра, слишком далека от жизни. Она не имела никакого практического значения, вот её и не принимали всерьёз.

— Поделом! Не выдумывай бесполезной заумщины.

— Опять ты торопишься! Да, во времена Буля алгебра его действительно не нашла себе применения. Но прошло каких-нибудь сто лет, и сейчас, в наши дни, булева алгебра используется в самых различных областях науки и техники. А самое главное — старая, никому не нужная булева алгебра широко применяется в самой молодой и в самой замечательной науке нашего времени — кибернетике.

— Ну да?! — Президент даже подскочил. — Вот не ожидал! Стало быть, то, что бесполезно сегодня, может оказаться полезным завтра?

— Это мы уже видели на примере Зенона, — напомнил я. — Кстати, идея, положенная Булем в основу его алгебры, задолго до него приходила в голову и другим учёным. Ещё в конце XIII века её проповедовал некий отшельник Раймунд Луллий. Правда, это стоило ему жизни; разъярённая толпа забросала его камнями. Луллий, как и Буль, остался непонятым. Даже несколько веков спустя его продолжали высмеивать такие великие мыслители, как Рабле и Джонатан Свифт: один — в сочинении «Гаргантюа и Пантагрюэль», другой — в «Путешествии Гулливера». Один лишь Джордано Бруно воздал должное сочинениям Луллия. Но и он, как мы знаем, окончил свою жизнь на костре инквизиции. Позже, в XVII веке, алгеброй логики занимался великий Лейбниц. Но и его рукопись пролежала в неизвестности более двухсот лет. Однако Луллий и Лейбниц — все это предшественники Буля.

— А были и последователи? — спросил Олег.

— Были и последователи. Во второй половине прошлого века немецкий математик Георг Кантор тоже, подобно Булю, изобрёл свою алгебру, и она также подверглась жестокой критике.

— Сколько, оказывается, можно напридумывать алгебр! — засмеялся Нулик.

— Целое множество! — подхватила Таня.

— Вот именно! — обрадовался я. — Это ты к месту сказала. Ведь Кантор назвал свою теорию алгеброй множеств, в отличие от обычной алгебры чисел. Само название «алгебра чисел» говорит о том, что она занимается количественными вычислениями. А вот алгебру множеств интересует не количество, а качество предметов, свойства, их объединяющие.

— Но при чём тут множества? — понукал меня Нулик. — И вообще что это такое — множество?

— Множеством математики называют собрание предметов (или понятий), которые обладают одним и тем же свойством. Вот, например, сидящие в театре во время спектакля люди — это зрители. Зрители образуют множество.

— Значит, ученики в классе — тоже множество, — сообразила Таня.

— И драчуны в классе — тоже множество, — добавил Сева.

— Правильно, — подтвердил я. — Но при этом заметь, что множество драчунов входит в множество учеников класса. Обозначим множество учеников класса буквой А, а множество драчунов — буквой Б. А теперь сложим оба множества. Что мы при этом получим?

— Получим А+Б, — гордо сказал Нулик.

— Верно. Но ведь множество Б входит в множество А. Значит, множество учеников класса при этом сложении ничуть не увеличится. Стало быть, А+Б так и останется А.

— Ну и алгебра! — развёл руками президент. — Совсем не похожа на обыкновенную.





— Как сказать! — возразил я. — В общем, алгебра множеств пользуется теми же правилами, что и алгебра чисел, хотя это и не обычные действия с числами. Ведь если ты возьмёшь множество красных карандашей и обозначишь его А, а затем множество синих карандашей обозначишь Б, то множество всех карандашей, как и в обычной алгебре, будет равно А+Б. И только несколько — именно несколько! — правил у алгебры множеств отличны от обычных.

— Да, но при чём здесь Буль? — возмутилась Таня. — Ведь речь как будто идёт об алгебре Кантора.

— В том-то и дело, что алгебра логики Буля и алгебра множеств Кантора по сути совершенно одинаковы.

— Но, насколько я помню, бульбули утверждали, что А+А=А, — возразил Сева, — а у вашего Кантора А+Б=А. Я пожал плечами:

— Да разве это не одно и то же? Допустим, что в классе драчуны все поголовно. Тогда множество учеников А равно множеству драчунов Б. Иначе говоря, А=Б. Подставим одно вместо другого и увидим, что А+А=А.

— Так вот в чём дело! — обрадовался Нулик. — Теперь я понимаю…

Я развёл руками.

— Ну, раз ты понимаешь, значит, нам самое время вместе с Магистром покинуть племя бульбулей и двинуться дальше.

— Только бы нас не настигли пущенные вслед бумеранги, — пошутила Таня.

— Хорошо, что ты о них вспомнила! — встрепенулся Сева. — Как известно, бумеранги тем и замечательны, что когда их пускают в цель, они возвращаются обратно. Если, конечно, в цель не попали. Так что упасть впереди Магистра бумеранги никак не могли. Разве что они были бракованные… К тому же это оружие австралийское, и вряд ли его применяют в Африке.

Снова поднял руку президент. Я уж, признаться, подумал, что он займётся задачей о ступеньках с мозаикой, но Нулик просто потребовал перерыва: ему, видите ли, необходимо подкрепиться перед походом к водопаду. Обычная история! Как и следовало ожидать, президенту никто не возразил.

«Подкрепление», приготовленное Таней, уничтожалось шумно и весело, после чего Нулик торжественно объявил, что снова готов к научной работе и попросил разрешения высказаться.

— Хочу отметить, — сказал он, — что, поднявшись на гору по канатной дороге, Магистр и впрямь оказался на высоте. Ему надо было сосчитать число камешков, покрывавших ступеньки, то есть найти сумму членов арифметической прогрессии от ста до пятисот. Для этого он воспользовался правилом, изобретённым Гауссом. И напрасно хранитель водопада отказался везти Магистра наверх. Я кончил.

— А я начинаю, — подхватил Олег. — Да будет тебе известно, что вычислять сумму членов арифметической прогрессии умели задолго до Гаусса. Однако правило это в самом деле связано с именем этого замечательного немецкого математика. Говорят, когда Гаусс был ещё школьником, учитель предложил однажды ученикам сложить все целые числа от единицы до сорока. Не успел он продиктовать своё задание, как семилетний Гаусс объявил, что ответ готов. Учитель, конечно, ему не поверил и даже пригрозил наказать за неуместную шутку. Но как же он удивился, когда увидал, что решение и в самом деле совершенно верное! Мальчик заметил, что равноотстоящие от концов прогрессии числа (1 и 40, 2 и 39, 3 и 38 и так далее) при сложении образуют одно и то же число: 41. А так как таких пар было 20, он умножил 20 на 41 и получил ответ: 820. Так маленький Гаусс своим умом дошёл до того, что было давно известно. Так что именем Гаусса Магистр назвал правило зря. Да и воспользовался он этим правилом неправильно. Верно сложил первое и последнее число, то есть 100 и 500, так же верно разделил сумму 600 на два и получил 300. Но вот дальше стал умножать 300 на число ступенек, которых было не 400, как он думал, а 401. Значит, и камешков на все рисунки ушло не 120 000, а 120 300.

— Допустим, — согласился президент, — но уж градусник действительно был испорчен. Тут Магистр прав. На вершине скалы мороз, а ртуть поднялась до 28 градусов выше нуля!

— Ай-ай-ай! — Таня укоризненно покачала головой. — А ещё президент. Неужели ты не догадался, что там висел термометр Фаренгейта?

Нулик хихикнул. Его всегда смешат незнакомые иностранные фамилии.

— Какой такой Фаренгейт?

— Вот такой. Немецкий физик XVIII века. Он предложил термометр со шкалой, где точка таяния льда обозначена не нулём, как на градуснике Цельсия, а числом 32. А точка кипения воды — не 100, а 212 градусов. Эта шкала и до сих пор употребляется в Англии и Америке. И 28 градусов по Фаренгейту — это около двух градусов мороза по Цельсию. Не мудрено, что у Магистра озябли руки.