Добавить в цитаты Настройки чтения

Страница 13 из 18



Кое-что об этих алгоритмах сборки мы уже знаем. Один такой пример нам дает изучение движения того же вязкого газа, о чем мы только что говорили. Если мы знаем механизм соударения молекул и если газ достаточно плотный, то есть если длина свободного пробега молекул достаточно мала, то мы, в принципе, владеем алгоритмом сборки: мы можем определить температуру, плотность, давление и другие характеристики системы «движущийся газ», которые не имеют смысла для произвольной совокупности молекул. Приведенный пример относительно прост, ибо мы знаем, как получаются общие свойства системы из свойств ее элементов.

Более сложный пример, хотя тоже еще относительно простой, нам дает кристаллография. Кристаллизация вещества — это один из примеров «сборки системы». В конце прошлого века Е. С. Федоров установил так называемый закон Федорова. Ему удалось перечислить все возможные формы (286) кристаллических структур. Оказалось, что, какое бы ни было вещество, способное к кристаллизации, будь то поваренная соль или алмаз, оно может принять лишь одну из перечисленных возможных форм.

Этот пример — тоже относительно простая иллюстрация возможных алгоритмов сборки, поскольку форма равновесия кристалла является в конечном счете следствием закона минимума потенциальной энергии. Однако здесь уже есть одна принципиальная трудность. Далеко не всегда мы можем предсказать финальное состояние процесса сборки. Как и в случае механизмов бифуркационного типа, оно определяется не только внешними условиями, но и неконтролируемыми случайными флюктуациями и внешними воздействиями.

Эти и многие подобные примеры действительно просты, ибо свойства системы могут быть установлены заранее — они определяются известными законами физики и химии (с учетом случайных флюктуаций, конечно).

Но такие примеры, как правило, счастливые исключения. Проблема сборки, то есть определение свойств системы на основе информации о свойствах ее элементов, не только труднейшая, но она только начинает осознаваться как одна из самых актуальных и самых универсальных проблем современной науки. Известных успехов достигли специалисты в области создания новых полимеров. Им действительно удается порой создавать искусственные материалы, обладающие заранее заданными свойствами. Однако их достижения в большей степени обязаны накопленному опыту и интуиции инженеров и химиков, нежели строгим выводам науки.

Проблемами сборки на молекулярном уровне занимается квантовая химия. Однако ее успехи пока еще очень ограниченны, и многие экспериментальные факты, нам всем известные, продолжают оставаться глубокой тайной. Так, например, мы очень много знаем о свойствах кислорода и водорода и, конечно, знаем, что их соединение — вода — будет образовывать систему, молекула которой состоит из двух атомов водорода и одного атома кислорода. Но мы совершенно беспомощны в объяснении свойств этой системы. Почему, например, плотность воды до поры до времени, как и у других веществ, растет вместе с падением температуры? Но ниже 4 градусов Цельсия она падает. В чем секрет такой аномалии? Можно ли сборку этой системы, называемую водой, полностью объяснить известными нам законами физики и химии и редуцировать изучение свойств воды к изучению атомарного уровня ее компонентов?

На подобный вопрос у нас пока нет ответа. И такие безответные вопросы нас встречают всюду. Можно ли было, например, предсказать свойства высокотемпературной сверхпроводимости у таких диэлектриков, как металлокерамика? Вот почему, когда я прочел последнюю книгу Пригожина, посвященную проблемам необратимости времени, мне показалась не очень оправданной его попытка редуцировать проблему «стрелы времени» к изучению тех уточнений, которые следует, может быть, внести в основное уравнение квантовой механики. Мне кажется вполне допустимой мысль о том, что на квантово-механическом уровне нет «стрелы времени». Там царствует обратимость, и замена знака временной координаты на обратный ничего не изменяет в характере процессов, протекающих на этом уровне, а наблюдаемая потеря временной симметрии на макроуровне — это всего лишь следствие особенностей механизмов сборки.

И для этого, как мне кажется, существуют определенные основания. В самом деле, мы видим, что для объяснения необратимости процесса эволюции на макроуровне достаточно факта стохастичности и существования механизмов бифуркационного типа. И оно не требует редукции к законам микромира. Кроме того, процесс перехода от микроуровня к макроуровню, то есть процесс сборки, так же как и другие процессы, проходящие во Вселенной, реализуется в условиях недертеминированных и подверженных бифуркациям.

Вот почему мне представляется непротиворечивой возможность сочетания временной асимметрии макроуровня с временной симметрией микроуровня.



Если процессы сборки и изучение тех или иных свойств системы зависят от свойств ее элементов и представляются столь сложными в мире неживой природы, то можно себе представить, сколь глубоки они в мире живого вещества и тем более в обществе! Рассматривая объединение отдельных элементов в систему, мы сталкиваемся с необходимостью рассматривать его как некоторый процесс, учитывающий его историю, то есть стохастику, неопределенность и наследственность.

Очень интересные данные нам дает этология — наука о поведении животных, особенно стадных. Стадо, например, северных оленей (карибу) начинает обладать присущим ему свойством лишь в том случае, если оно достигнет определенной численности. Несколько отдельных оленей, даже если они находятся вместе, не проявляют тех свойств совместного поведения, которые свойственны большому стаду.

При его формировании большую роль играет наследственность, точнее, своеобразная память, о которой я буду говорить в одном из следующих разделов. Но, во всяком случае, если в стадо диких оленей попадают домашние олени, то их поведение всегда несколько отлично от стандартного, и они, например, в первую очередь оказываются добычей волков.

Таким образом, чтобы изучить поведение стада, его свойства как некоторой системы, а стадо является системой, совершенно недостаточно знать особенности отдельных животных. Механизм сборки — это в данной ситуации особый процесс, требующий изучения неизмеримо большего, чем изучение поведения отдельных животных. Во всяком случае, этот процесс порождает определенное кооперативное поведение, обеспечивающее в известном смысле «оптимальное» функционирование системы. В подобных ситуациях говорить о редукционизме просто не имеет смысла.

Но это утверждение вовсе не означает признание витализма или какой-либо из его разновидностей. Просто в процессе «сборки» возникают новые системные свойства, не выводимые из свойств объектов более низкого уровня.

Я уже произнес одно выражение — «кооперативное поведение». Оно, конечно, имеет смысл лишь тогда, когда речь идет об объектах, для которых можно говорить о «целеполагании», например, для живых существ, стремящихся сохранить свой гомеостазис. Кооперативность поведения, которой будут посвящены несколько разделов этой книги (если ее рассматривать с позиций механизмов сборки), есть лишь специальный случай возникновения общих для системы свойств. Но при переходе к изучению общесистемных характеристик человеческого общества именно это свойство коллективов и любых организаций нашего общества приобретает важнейшее значение. А в проблемах коэволюции биосферы и человека — решающее!

Я уже говорил, что развитие нашего мира на всех его уровнях представляется в форме некоторого процесса непрерывного возникновения (и разрушения) новых систем, новых организационных структур. И механизмы сборки, определяющие процессы становления этих систем, их возникновение как синтез, объединение более просто организованных систем, элементов, возникновение новых свойств, нового качества, являются стержнем всего мирового процесса развития.

Несмотря на их роль в нашем понимании общих процессов развития, столь необходимого нам сегодня в выработке стратегии во взаимоотношении человека и природы, мы очень мало можем сказать об общих свойствах «механизмов сборки», а тем более прогнозировать результаты их действий. Задача изучения свойств этих механизмов, как мне кажется, еще толком не поставлена.