Добавить в цитаты Настройки чтения

Страница 5 из 10



В радиации – то же самое. Если вы слышите, мол, природный радиоактивный фон составляет семь микрорентген в час – это именно мощность дозы. А в современных дозиметрических приборах мощность дозы выражается в микрогреях в час.

На экзамене профессор задаёт студенту вопрос:

– Что такое «лошадиная сила»?

– Ну… это… такая сила, которую развивает лошадь ростом один метр и весом один килограмм.

– Да?! И где же вы видели такую лошадь?

– Так просто её не увидишь. Она хранится в Париже, в палате мер и весов.

Подведём итоги. Миф о самом опасном виде радиации – гамма-излучении – объясняется путаницей: смотря что понимать под опасностью. У гамма-излучения максимальная проникающая способность, от него труднее защититься. Но при одинаковой поглощённой дозе наиболее опасно альфа-излучение.

Опасность ионизирующих излучений определяется дозой. Доза может выражаться в двух единицах: греях и зивертах. Если доза выражена в зивертах – её последствия не зависят от вида излучения.

Литература

1. Нормы радиационной безопасности НРБ – 99/2009: санитарно-эпидемиологические правила и нормативы. – М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009. – 100 с.

Миф четвертый: большинство наших болезней – от радиации

После Чернобыля кое-кто чуть не все свои недуги стал связывать с радиацией. И основания для таких суждений имелись – например, у членов аварийных бригад («ликвидаторов»). Большинство из них (почти 70%) – по-настоящему больные люди [1]. Причём болезни могут быть самые разные (подробнее – в главе 9). И причина, казалось бы, очевидная – радиация. А ведь чернобыльское загрязнение задело всех нас. Выходит, и наши болезни – тоже от радиации?

Но большинство специалистов по радиационной гигиене рассуждают иначе. О каких болезнях можно говорить всерьёз? Посмотрите, какие скромные дозы получила основная часть ликвидаторов: около 0,1 Зв! Для сравнения – в 1948 – 1957 годах население Челябинской области набирало в разы больше – а болели-то люди куда меньше (рис. 4.1)

Ещё разительней отличия ликвидаторов от работников ПО «Маяк» (город Озёрск Челябинской области). После войны на этом сверхсекретном заводе нарабатывали плутоний для ядерных зарядов. Тысячи рабочих и инженеров получили дозу 1,7—2,7 Зв. Это в 20—30 раз больше, чем ликвидаторы. Но такого роста болезней, как у ликвидаторов, у «маяковцев» не было!

Значит, причина массовых болезней ликвидаторов не в радиации. Или не только в радиации. А в чём? Так ясно же – утверждают многие медики – в радиофобии. Ликвидаторов сделали больными или даже убили журналисты. Но далеко не все согласятся с таким мнением.

Читатель, я знаю, какая точка зрения вам ближе. Если по своей профессии вы далеки от радиации – первая. И знаете: вы правы. А, так вы – атомщик? К тому же с высшим образованием? Тогда вам ближе вторая точка зрения. И вы правы. Вы спросите: как это может быть? Ведь прав может быть лишь кто-то один? И вы тоже правы.

Рис. 4.1. Аварийные дозы облучения персонала и населения СССР (графическая обработка данных [2—7])

А теперь серьёзно. К чему эти споры? Разве медики не могут доказать: вот эта болезнь у ликвидатора Иванова – от радиации; Петрову надо было меньше «водку пьянствовать», а Михайлов у нас шибко нервный, вот здоровье и не уберёг. В этом всё и дело! Медицина в большинстве случаев не способна дать чёткий ответ. Особенно, когда речь идёт о возникновении раковых заболеваний при облучении дозами менее 100 мЗв. Вы спросите, почему? Да потому, что малые дозы радиации действуют на наш организм точно так же, как и многие другие поражающие факторы: химические агенты, стресс и т. п. Как сказал бы медик-профессионал, у них общий механизм действия. Возможно, вы о нём слышали. Это – образование так называемых свободных радикалов [2].

Сейчас мы подошли к чрезвычайно интересному и важному вопросу. Ведь свободные радикалы оказались ключом к разгадке многих болезней цивилизации – и не только тех, что связаны с радиацией. Присмотримся к ним внимательнее. Сначала проясним, что же представляют собой эти самые радикалы, а затем – как они влияют на здоровье.

Вообще-то свободные радикалы известны давным-давно. Так называют «неправильные» осколки молекул и атомов. Неправильные – потому что они имеют неспаренный электрон. Вся трудность понимания сути свободных радикалов – оттого, что этому не учат в школе. И мы привыкли считать, что молекулы могут распадаться лишь двумя способами: на другие молекулы (либо атомы) – или же на ионы.

Возьмём, к примеру, молекулу воды (как говаривал Дукалис из «Улиц разбитых фонарей»: «Из всей школьной химии я помню только одну формулу – молекулы воды: аж два: ноль).

Как может распадаться эта молекула?

Во-первых – на газообразный водород и кислород:

2Н2О → 2Н2 + О2





Второй вариант – диссоциация на ионы:

Н2О → Н+ + ОН-

Но, оказывается, возможен и третий вариант. В результате необычно мощного воздействия (например, ионизирующего излучения) наша молекула разваливается на два незаряженных осколка:

Н2О → Н. + ОН.

Вот эти-то осколки (точка обозначает неспаренный электрон) и называют свободными радикалами. Они чрезвычайно неустойчивы, могут существовать лишь доли секунды и всё это время ищут другой атом, чтобы отобрать у него электрон и спарить со своим. Иными словами, эти частицы очень активны, даже агрессивны. Найдя другую частицу, свободные радикалы объединяются. Например, объединиться могут два свободных радикала:

ОН. + ОН.→ Н2О2

Образуется молекула перекиси водорода – тоже свободный радикал, но более устойчивый, чем исходные.

Свободный радикал может объединиться и с молекулой:

О. + О2 → О3

Образуется озон, который тоже относится к свободным радикалам; опять же он более устойчив, чем атомарный кислород (О.).

Но хватит уже химии. Вспомнился реальный случай с одной школьницей. Та, сдав на «отлично» выпускной экзамен спрашивает учительницу:

– Мариванна, а вопрос можно?

– Конечно, Светочка.

– Вы обещаете ответить честно?

– Да, да.

– Мариванна, а вы сами-то верите во все эти молекулы?

Но это к слову. Итак, свободные радикалы – не экзотика, мы с ними давно знакомы, взять хоть перекись водорода или озон.

Известно, что свободные радикалы всегда присутствуют в органах и тканях живого организма. Они участвуют во многих реакциях, являются частью нашей защитной системы, регулируют обменные процессы, включая гибель устаревших и изменённых клеток и их замену [8].

Но почему в последние десятилетия так возрос интерес к этим самым свободным радикалам? К ним и к их еще более известным «противникам» – антиоксидантам?

Всё началось в 1956 году. Тогда американский ученый Дэнхем Хармен выдвинул сенсационную гипотезу (теперь это признанная теория свободных радикалов). В чём ее суть?

Хармен открыл новую, уже негативную роль свободных радикалов в организме. Он предположил (ни много, ни мало): избыток свободных радикалов является непосредственной причиной большинства болезней возраста. Точнее, их преждевременного проявления. Действительно – сенсация. Рак, сердечно-сосудистые заболевания, болезнь Альцгеймера и даже старость в 60 лет – и одна из главных причин этого букета – свободные радикалы. Но почему болезни-то разные – у разных людей? А здесь действует принцип: где тонко, там и рвется. Не совсем понятно? Сейчас мы во всем разберёмся.

Давайте сравним две группы людей. В первую включим людей курящих; проживающих на экологически- или радиационно-загрязнённых территориях; тех, кто питается неправильно (много жареного, копчёного, жирного; мало витаминов); испытывающих хронические стрессы; старых и пожилых. То есть людей, которые подвергаются воздействию факторов риска – внешних или внутренних (возраст). А во второй группе соберём людей, которые таким воздействиям не подвергаются.