Добавить в цитаты Настройки чтения

Страница 18 из 45

По мере развития физики полупроводниковых материалов появилась возможность создать в полупроводнике неоднородность иного вида – неоднородность состава. Границу между двумя полупроводниками с разным составом называют гетеропереходом, то есть неоднородным (по составу) переходом. В такой ситуации потенциальные барьеры для электронов и дырок в гетеропереходах отличаются друг от друга, и при приложении внешнего напряжения ток может определяться проникновением через границу частиц только одного знака, например, электронов.

Реализовать эти эффекты и их следствия удалось прежде всего в полупроводниках на основе соединений элементов III и V групп, например, в арсенида галлия, GaAs. В этих полупроводниках при рекомбинации возбужденных электронно-дырочных пар энергия возбуждения передается в основном квантам света – происходит излучательная рекомбинация. Поэтому развитие физики и технологии гетеропереходов оказалось наиболее важным для приборов оптоэлектроники – для светодиодов, полупроводниковых лазеров и фотоприемников.

Первые патенты на гетеропереходы был получены тем же В. Шокли, а затем Г. Кремером, которые исследовали эту ситуацию в пятидесятые годы теоретически. В начале шестидестых годов в Физико- техническом институте имени А.Ф. Иоффе (ФТИ) была выпущена монография Н.Н. Губанова по теории гетеропереходов. Тогда многие полагали, что физика гетеропереходов останется на уровне идей, что реализовать работающие гетеропереходы не удастся, потому что на границе двух полупроводников с разным составом будет сильно искажаться решетка, будут накапливаться примеси и не будет осуществляться одностороннее проникновение носителей тока через переход.

Тем не менее Ж.И. Алферов начал исследования гетеропереходов на основе соединений элементов III и V групп. Первые попытки оказались неудачными. Тогда были поставлены исследования гетеропереходов системы GaAs- GaAlAs. В этой системе на границе намного меньше искажения ионной решетки, от правильности которой зависит эффективность работы приборов. Была разработана технология выращивания из жидкой фазы, и удалось вырастить идеальные гетеропереходы этой системы. Из них оказалось возможным сделать и полупроводниковые лазеры, и светодиоды. Эти исследования были выполнены на два-три года раньше соответствующих американских и европейских работ (японские исследователи тогда еще не лидировали в научно-технической гонке).

На основе работ группы Ж.И. Алферова были сделаны полупроводниковые лазеры, работающие при комнатной температуре в режиме постоянного тока, сначала инфракрасные, потом красные. Это определило широту их применения. Важный результат научных исследований: было показано, что рекомбинация в этих структурах идет в основном как излучательная. Отсюда следовало, что на их основе могут быть созданы эффективные светодиоды и лазеры.

В начале семидесятых годов ФТИ, в котором работал Ж.И. Алферов, направил его на стажировку в США, в Иллинойский университет, в лабораторию профессора Ника Холоньяка. Он происходил из семьи, эмигрировавшей в Америку с Украины в двадцатых годах, читал научную литературу по-русски и знал работы Алферова. В это время ученые из фирмы «Белл» также сделали гетеропереходы на основе арсенида галлия, и их работы были представлены на золотую медаль Американского физического общества. Заявка попала на отзыв Н. Холоньяку, который написал, что все это очень хорошо, но такие переходы сделал на два-три года раньше Алферов. И медаль была присуждена Ж.И. Алферову. Это признание, по-видимому, оказалось потом очень важным для доказательства его приоритета в Нобелевском комитете.

Другое важное применение гетеропереходов – фотопреобразователи. Если мы хотим создать фотоприемник, прибор, преобразующий излучение в электрический сигнал, то важно, чтобы квант света был поглощен вблизи перехода. В обычном р-n-переходе свет частично поглощается в материале полупроводника. Но если р-n-переход сделать в гетеропереходе, то есть p-область окажется в одном полупроводнике, а n-область – в другом, то можно пропускать свет через полупроводник, прозрачный для этой длины волны (широкозонный), а поглощать его на границе с вторым, непрозрачным (узкозонным). На этом пути были сделаны солнечные элементы с КПД более 25 процентов.





Жорес Иванович Алферов замечателен не только своей физической интуицией и умением довести экспериментальный результат до приборного применения, но и организаторскими способностями, умением собрать группу талантливых молодых людей – теоретиков, экспериментаторов и технологов, которые были увлечены наукой и дружно работают. Его сотрудники – Д.З. Гарбузов, В.М. Андреев, В.И. Корольков, И.Третьяков, В.Б. Халфин, ЕЛ. Портной – получали и Ленинские, и Государственные премии, стали докторами наук и основателями новых, своих направлений.

Важна и та научная школа, из которой произошел сам Алферов. Это – школа ФТИ, созданная Абрамом Федоровичем Иоффе, который сам был учеником К. Рентгена. К. Рентген был первым нобелевским лауреатом по физике в 1901 году; он получил премию за открытие рентгеновских (Х-) лучей, но сам говорил, что его работы по физике кристаллов не менее важны. А.Ф. Иоффе был учеником Рентгена именно в области физики кристаллов. Школа ФТИ известна умением связать науку и ее применения. Это была школа «с высоким квантовым выходом», из нее вышли, например, И.В. Курчатов и Н.Н. Семенов. В семидесятые годы оказалось, что гетеропереходы можно создавать на основе четверных твердых растворов. Это было результатом развития исследований, выполненных Ж.И. Алферовым совместно с сотрудниками Физического института имени П.Н. Лебедева АН и ГИРЕДМЕТа. В этом случае можно одновременно подгонять расстояния между атомами в решетке, чтобы переход был идеальным, и изменять ширину запрещенной зоны так, как это нужно для практических применений.

Вернемся к Нобелевской премии. Почему в ней соединены Ж.И. Алферов и Г. Кремер, понятно. Теоретические исследования второго послужили толчком для развития работ в этой области. Что касается Дж. Килби, тут логика иная. Он предложил делать электронные схемы не из отдельных полупроводниковых приборов – диодов и транзисторов, а создавать их на одной пластине, чипе, предложил методику и технологию создания микросхем. То есть выдвинул и осуществил идею, которая сейчас лежит в основе всей полупроводниковой схемотехники.

Применение гетеропереходов привело к прорывам и в микроэлектронике – на их основе разработаны мощные высокочастотные транзисторы, генераторы, усилители. На них, по существу, держится вся техника высокочастотной радио- и телефонной связи. Оптоэлектроника, в свою очередь, обеспечивает волоконно-оптическую связь. Полупроводниковые лазеры записывают и считывают информацию на компакт- дисках с увеличенной емкостью, у которых плотность хранения информации растет квадратично при уменьшении длины волны лазера.

Работы Алферова – это вершина пирамиды, составленной из большого числа работ и направлений. И есть нечто общее, что объединяет все эти идеи в одно направление – это продвижение человека в создании новых материалов и реализации на их основе все более «тонко и точно» построенных приборов. Работы в этой области - блестящий пример реализации цепочки «наука – технология – техника – внедрение в быт». На этом направлении доходы на много порядков превышают доходы от торговли. Но для успешной деятельности по построению таких цепочек надо много работать и иметь высокий уровень культуры. И не случайно ряд Нобелевских премий присужден по физике полупроводников. Физика полупроводников – это яркий пример того, как знание фундаментальных принципов квантовой теории твердого тела, ясное понимание физических явлений и совершенная технология дают человечеству такую силу, которая изменяет условия жизни людей и общественное сознание.