Страница 7 из 10
Считается, что гетерохроматин генетически неактивен в связи с высокой степенью конденсации, а эухроматин – активен. Но, с другой стороны, нахождение в эухроматине является недостаточным условием для экспрессии генов. Еще больше вопросов возникает при изучении функционирования гетерохроматина. Несмотря на многолетнюю историю интенсивного изучения структурно-функциональных особенностей разных видов хроматина, в этой проблеме остается много неясного.
Рис. 3.2. Уровни организации хроматина эукариот
У некоторых организмов, наряду с постоянными хромосомами, в ядрах обнаружены дополнительные хромосомы – так называемые В-хромосомы. Часто они целиком состоят из гетерохроматина. Функции их до конца не понятны.
В природе наблюдаются случаи нетипичной структуры хромосом. Поскольку такие нетипичные хромосомы имеют крупные размеры, они служат удобной моделью для изучения генома.
Хромосомы типа «ламповых щеток» представляют собой растянутый и раскрученный вариант обычных хромосом ооцитов во время длительного мейоза. Лучше всего они изучены у амфибий, в связи с их особо крупными размерами. Длина таких хромосом в 30 раз превышает их длину в обычном состоянии. Хромосомы типа «ламповых щеток» получили свое название из-за наличия петель. Петли – это участки хромосомной нити, выступающие из более компактного материала и являющиеся местом активной транскрипции. В конце мейоза хромосомы типа «ламповых щеток» возвращаются к обычному состоянию.
Политенные хромосомы образуются в некоторых клетках в результате максимальной деспирализации и многократной репликации без последующего расхождения хромосом. Это явление называется эндомитозом. Перед эндомитозом гомологичные хромосомы соединяются попарно – конъюгируют. Такая конъюгация не характерна для других соматических клеток. Все политенные хромосомы кариотипа объединяются центромерами в общий хромоцентр. Лучше всего политенные хромосомы изучены у двукрылых насекомых (в том числе у классического объекта – дрозофилы), хотя встречаются и у некоторых других организмов.
Поскольку политенные хромосомы содержат более 1000 нитей, они в 1000 раз толще обычных хромосом и у них хорошо видны участки более плотной спирализации – диски. В геноме дрозофилы выявлено около 5000 дисков – все они пронумерованы и формируют цитологические картыхромосом. Каждый диск представляет собой самостоятельную функциональную единицу, содержащую от одного до нескольких генов. Во время экспрессии активные диски «вздуваются» и образуют пуфы, которые появляются и исчезают в определенной последовательности, в зависимости от активности генов на разной стадии онтогенеза.
Цитологический анализ хромосом этих двух типов заложил основы представлений о хромомерном принципе организации хромосом. Хромомеры – это участки временно конденсированной неактивной ДНК. Расположение хромомеров для каждой хромосомы относительно постоянно. Хромомеры могут деконденсироваться и переходить в активное состояние, формируя петли, на которых происходит синтез РНК.
3.4. Клеточный цикл и митоз
В основе индивидуального развития всех организмов лежит клеточное деление. Время существования клетки от деления до деления называется клеточным (митотическим) циклом. Величина его может сильно различаться для разных организмов и для разных стадий развития. Типичный митотический цикл эукариотической клетки состоит из 4 периодов (рис. 3.3).
Пресинтетический период (G1) – наиболее длительный период клеточного цикла. Он характеризуется ростом клетки, накоплением РНК, АТФ, белков, необходимых для образования клеточных структур, подготовкой клетки к синтезу ДНК.
Рис. 3.3. Клеточный (митотический) цикл
Синтетический период (S) – период синтеза ДНК и репликации хромосом. В этот период происходит также интенсивный синтез гистонов, их перемещение в ядро, где они связываются с реплицированной ДНК. К концу периода каждая хромосома состоит из двух хроматид, имеющих идентичные копии молекулы ДНК. Таким образом, именно во время S-периода генетический материал клетки удваивается.
Постсинтетический период (G2) – период формирования структур, необходимых для процесса деления клетки. Продолжается синтез РНК и белков. Запасается энергия в виде АТФ.
Периоды G1, S, G2 иногда объединяют под названием интерфаза, однако надо заметить, что термин этот несколько устаревший, возникший в далекие времена, когда механизм клеточного деления был не изучен.
Период митоза (М) – период деления генетического материала и образования двух новых клеток. Этот период занимает менее 10 % времени клеточного цикла.
Последовательность периодов клеточного цикла можно представить следующим образом:
G1 → S → G2 → M.
Митоз – основной способ деления эукариотической клетки. В нем выделяют 4 следующие друг за другом фазы:
1. Профаза. Идет процесс прогрессивной спирализации хромосом. Исчезают ядрышки, разрушается ядерная мембрана. Образуется веретено деления, состоящее из микротрубочек. К концу про-фазы центриоли клеточного центра расходятся к полюсам клетки.
2. Метафаза. Хромосомы выстраиваются в экваториальной плоскости. В области центромеры они прикреплены к нитям веретена деления, но некоторые нити веретена проходят от полюса до полюса, не прикрепляясь к хромосомам.
3. Анафаза. Центромера делится пополам, и хроматиды начинают синхронно расходиться к полюсам клетки. С этого момента они становятся самостоятельными дочерними хромосомами. Большой теоретический интерес представляет механизм распределения хромосом, случайность или предопределенность этого процесса. Не совсем понятна роль веретена деления и центриолей. В конце анафазы на полюсах клетки группируются два идентичных хромосомных набора.
4. Телофаза. Завершается обособление двух кариотипов. Вокруг них образуются ядерные мембраны. Происходит деспирализация хромосом, формируются ядрышки. Распадается митотическое веретено деления. Завершает телофазу процесс разделения цитоплазмы – цитокинез, в котором главную роль играют структуры цито-скелета.
Данная схема митоза характерна для всех высших эукариот. Некоторые протисты и грибы имеют ряд особенностей процесса, не затрагивающих его сущность.
Основное биологическое значение митоза заключается в точном распределении генетического материала между дочерними клетками.
3.5. Мейоз
Современные представления о цитологических основах наследственности сформировались только после выяснения генетического смысла процесса мейотического деления клеток.
Мейоз – это процесс образования гаплоидных клеток, т. е. клеток, имеющих половинный набор хромосом. Его можно рассматривать как второй тип деления клеток. Мейоз также можно рассматривать и как специфичный вариант клеточной дифференцировки. Таким способом образуются половые клетки (гаметы) и споры.
Гамета – это клетка, способная сливаться с другой гаметой с образованием диплоидной клетки (зиготы), дающей новый организм.
Спора – это клетка, способная самостоятельно развиваться в новый организм.
В результате процесса мейоза из одной диплоидной клетки образуется 4 гаплоидных (гаметы или споры). У большинства организмов мейоз протекает принципиально сходно. Он состоит из двух последовательных делений: редукционное деление (мейоз-1) и эквационное деление (мейоз-2). В каждом из них различают 4 фазы: профазу, метафазу, анафазу и телофазу. Таким образом, весь процесс мейоза условно можно разбить на 8 этапов, плавно переходящих один в другой. Если другие пути на специализацию начинаются после М-периода клеточного цикла, то мейоз начинается после S-периода, т. е. после репликации хромосом.