Добавить в цитаты Настройки чтения

Страница 64 из 82

Рис. 16.7. Холестерин. Вверху: схема молекулы холестерина. Посередине: шаростержневая модель. Внизу: объемная модель. Холестерин — это спирт (с OH-группой), состоящий из четырех углеродных колец, пронумерованных от 1 до 4, и углеродной цепочки

Схема в верхней части рисунка позволяет увидеть, как атомы соединены друг с другом. Шаростержневая модель дает более подробную трехмерную иллюстрацию строения молекулы. Объемная модель реалистичнее представляет картину трехмерного строения молекулы. Она охватывает области пространства, где концентрируется большая часть распределения вероятности для электронов. Важно помнить, что молекулы — это не стержни и шары, а делокализованные электронные облака, окружающие положительно заряженные ядра, которые находятся в центрах атомов.

Если сравнить строение холестерина на рис. 16.7 с любыми моделями жирных кислот, представленными выше, становится очевидно, что холестерин совсем на них не похож. Например, объемная модель стеариновой кислоты (см. рис. 16.1) сильно отличается от объемной модели холестерина на рис. 16.7. Ясно, что на молекулярном уровне холестерин имеет мало общего с жирными кислотами. Тем не менее он часто обсуждается в связи с жирами, содержащимися в пище, а сама молекула холестерина приобрела крайне негативную «ауру».

Вопреки общему мнению, холестерин полезен

Да, холестерин пользуется дурной славой. Тем не менее это чрезвычайно важная биологическая молекула. Клетки окружены мембранами. Внутри клетки располагаются все те сложные молекулярные машины, которые необходимы для осуществления химических процессов, ответственных за жизнедеятельность. Вне клетки находится множество других химических соединений, включая кислород, соли и крупные биологические молекулы. Клеточная мембрана отделяет внутреннюю часть клетки от внешнего пространства, позволяя некоторым молекулам проходить внутрь и наружу, тогда как другие всегда остаются снаружи или внутри. Важнейшим компонентом клеточной мембраны являются фосфолипиды. Фосфолипиды состоят из двух углеводородных цепочек длиной обычно по 16 атомов углерода, присоединенных одним концом к головной группе, которая несет положительный и отрицательные заряды. Эти заряды делают головную группу чрезвычайно гидрофильной (притягивающейся к воде). Углеводородные цепочки крайне гидрофобны (отталкиваются от воды). Клетки окружены водой и содержат много воды внутри. Заряженные головные группы стремятся быть в воде, тогда как углеводородные хвосты избегают воды. Чтобы одновременно удовлетворить требованиям заряженных гидрофильных головных групп и гидрофобных углеводородных хвостов, фосфолипиды организуются в двуслойную структуру, схематически изображенную на рис. 16.8.

Рис. 16.8. Схематическое изображение участка двойного фосфолипидного слоя с двумя молекулами холестерина. Головные группы (шары) заряжены и стремятся к воде. Углеводородные хвосты избегают воды, образуя двойной слой. Гидроксильная группа холестерина находится у границы воды

На рисунке показано сечение двуслойной фосфолипидной мембраны, которая полностью окружает и ограничивает клетку. Здесь шары — это заряженные головные группы, а волнистыми линиями представлены углеводородные цепочки. Реальная клеточная мембрана намного сложнее, чем показано на рис. 16.8. Она содержит множество белков, выполняющих специфические функции, такие как пропуск определенных ионов или молекул внутрь клетки и воспрепятствование прохождению других.





Помимо фосфолипидов, основной составляющей клеточной мембраны является холестерин. На него приходится около 30% клеточной мембраны. На рис. 16.8 схематически представлены две молекулы холестерина, замещающие два фосфолипида. Холестерин важен, поскольку он управляет механическими свойствами двойного слоя. Без холестерина клеточная мембрана не могла бы функционировать. Поэтому холестерин крайне важен. Человеческий организм вырабатывает значительное количество холестерина, и лишь небольшая часть необходимого холестерина поступает с пищей. Короче говоря, если вы удалите из своего тела весь холестерин, то умрете.

Проблема с холестерином

Проблема с холестерином состоит не в том, что вы получаете некоторое его количество с пищей, а в том, как он ведет себя в организме. Вредное влияние холестерина на здоровье связано с жирами, но не потому что холестерин является жиром, и даже не потому, что жирная пища может содержать холестерин. Холестерин переносится в потоке крови, будучи связанным с очень крупными биомолекулярными комплексами, которые называются липопротеинами. Они состоят из очень крупных белков, фосфолипидов, жирных кислот, холестерина и других молекул. Липопротеины можно разделить по крайней мере на два класса: липопротеины низкой плотности (ЛПНП) и липопротеины высокой плотности (ЛПВП). Они имеют яйцеобразную форму и диаметр около 200 Å (200 · 10–10 м). Объем этих частиц составляет около 5 000 000 Å3. Для сравнения: объем молекулы холестерина — примерно 200 Å3. Таким образом, частицы ЛПНП и ЛПВП где-то в 20 000 раз больше молекулы холестерина и переносят в потоке крови сразу много молекул холестерина. Высокий уровень ЛПНП по отношению к ЛПВП сильно коррелирует с ишемической болезнью сердца и атеросклерозом. Механизм этой связи пока не вполне ясен, но переносящие холестерин ЛПНП приводят к возникновению опасных отложений на стенках артерий, а ЛПВП — нет. Высокий уровень ЛПНП по сравнению с ЛПВП (большое значение отношения ЛПНП к ЛПВП) обусловлен потреблением насыщенных жиров и в еще большей степени транс-жиров. Транс-жиры не только повышают уровень ЛПНП, но еще и снижают уровень ЛПВП, усугубляя проблему. Таким образом, потребление жирной пищи имеет значение, но не потому, что она содержит холестерин. Что действительно важно, так это характер употребляемых с пищей жиров. Лучше использовать масла, содержащие большое количество полиненасыщенных жиров, которые не подвергались обработке, порождающей значительное количество транс-жиров.

В главе 14 мы обсуждали одиночные и двойные углеродные связи. Были описаны разные типы гибридных атомных орбиталей, служащих для образования молекулярных орбиталей. Квантовая теория позволяет во всех деталях объяснить химические связи и то, как их природа влияет на форму молекул и силу связей, удерживающих атомы вместе. В этой главе мы на примере жиров проиллюстрировали тот факт, что незначительные, казалось бы, особенности молекулярных связей — одиночные они или двойные, сколько имеется двойных связей, находятся ли они в цис- или транс-конформации — играют в биологии чрезвычайно важную роль. Геометрия двойных связей может быть в буквальном смысле вопросом жизни и смерти.

******** Точнее, молекула жирной кислоты. В английском языке термин fat (жир) может относиться к жирным кислотам, а не только к состоящим из них триглицеридам (о которых речь в конце главы), как в русском языке. В переводе такое упрощенное словоупотребление сохранено лишь там, где оно не приводит к недоразумениям, то есть в основном в диетологическом контексте. — Примеч. пер.

******** Карбоксильная группа — группа –COOH, характерная для класса карбоновых кислот, к числу которых относятся жирные кислоты. — Примеч. пер.

******** Канола (от англ. canola — Canadian oil) — растительное масло, вырабатываемое в основном из рапса, а также из турнепса. — Примеч. пер.

******** К сожалению, в России на этикетках подсолнечного масла нет информации о содержании разного типа жиров. Поэтому судить о составе можно лишь по отметкам «масло холодного отжима», что означает отсутствие термической обработки и, следовательно, гидрогенизации полиненасыщенных жиров, и «рафинированное», что указывает на обработку, которая устраняет характерные запах и привкус и в то же время значительно повышает содержание в масле насыщенных и мононенасыщенных жиров. Еще одним косвенным признаком может служить срок хранения. Для рафинированного масла, прошедшего гидрогенизацию, он обычно устанавливается равным 12 месяцам, а для масла холодного отжима, которое не подвергалось гидрогенизации, срок хранения, как правило, короче и составляет от трех до девяти месяцев. — Примеч. пер.