Добавить в цитаты Настройки чтения

Страница 62 из 82

Читайте этикетки

Как отмечалось выше, полиненасыщенные жиры могут быть полезны. В натуральных подсолнечном и сафлоровом маслах содержание полиненасыщенных жиров очень высоко. Однако многие поступающие в продажу сорта этих масел частично гидрогенизированы, что делает их более подходящими для использования при высокотемпературном приготовлении пищи. О том, было ли подсолнечное или сафлоровое масло частично гидрогенизировано, можно судить по данным о пищевой ценности, приводимым на этикетке. Если там сказано, что количество мононенасыщенных жиров больше, чем полиненасыщенных, значит, масло было частично гидрогенизировано. В случае, когда масло не подвергалось гидрогенизации, количество полиненасыщенных жиров в нем значительно превосходит количество мононенасыщенных. Поэтому для получения всей пользы, которую дает высокое содержание полиненасыщенных жиров в подсолнечном и сафлоровом маслах, такое масло не должно быть частично гидрогенизированным. Чтение этикеток позволит в этом разобраться.********

Транс-жиры

Все эти разговоры о гидрогенизации масла замечательным образом оставляют в стороне главную проблему — транс-жиры. Что это такое? На рис. 16.4 изображена олеиновая кислота в двух конформациях — цис******** и транс. Обе молекулы содержат 18 атомов углерода, 34 атома водорода и одну двойную углерод-углеродную связь. Атомы соединены друг с другом в одном и том же порядке. Различия касаются геометрии молекулы вблизи двойной связи.

В цис-конформации два атома водорода, связанные с девятым и десятым атомами углерода, находятся с одной и той же стороны молекулы. Они смотрят под углом в сторону верха страницы. Молекула изображена так, что двойная связь расположена горизонтально. Угол между двойной связью и одним из атомов H составляет 120°, поскольку для образования -связей служат треугольные sp2-гибридизированные -орбитали. Поэтому направления от девятого и десятого атомов углерода к атомам водорода составляют 30° к вертикали. В цис-молекуле две цепочки атомов, отходящие от девятого и десятого атомов углерода с двух сторон от двойной связи, отклоняются вниз и составляют угол 60° с вертикальной линией, перпендикулярной двойной связи.

Рис. 16.4. Шаростержневые модели цис-олеиновой и транс-олеиновой кислот. И та и другая содержат 18 атомов углерода и одну двойную связь, однако их геометрия различается

В транс-конформации два атома водорода присоединены к девятому и десятому атомам углерода с противоположных сторон молекулы. Один указывает почти прямо вверх, а другой — почти прямо вниз. Две цепочки углеродных атомов, отходящие от девятого и десятого атомов углерода, идут в противоположных направлениях относительно двойной связи. В итоге цис-молекула «изогнута» в месте двойной связи, тогда как транс-молекула остается в этом месте практически «прямой».





В нормальных условиях поворот вокруг углерод-углеродной двойной связи невозможен. Эта невозможность поворота имеет колоссальное значение. На рис. 14.13 изображены гош- и транс-конформации н-бутана, который содержит только одиночные связи. Поворот вокруг одиночной связи легко происходит при комнатной температуре. Поэтому в случае н-бутана гош- и транс-конформациии не зафиксированы. На самом деле, будучи растворены в жидкости при комнатной температуре гош- и транс-конформации н-бутана переходят друг в друга за счет поворотов вокруг одиночной средней углерод-углеродной связи примерно за 50 пс (50 триллионных долей секунды), то есть за очень короткое время. Напротив, цис- и транс-конформации олеиновой кислоты, изображенные на рис. 16.4, зафиксированы. Они не переходят друг в друга без очень высокой температуры и катализатора.

Чтобы понять, почему поворот вокруг одиночной углерод-углеродной связи происходит легко, а вокруг двойной связи невозможен, надо рассмотреть гибридные орбитали, используемые углеродом для создания одиночной и двойной углерод-углеродной связей. На рис 14.9 изображены гибридные орбитали, служащие в этане для образования одиночной углерод-углеродной связи. Каждый атом углерода связан с другими атомами одной из четырех гибридных sp3-орбиталей. В средней части рис. 14.9 схематически показано образование углерод-углеродной связи за счет перекрытия sp3-орбитали одного атома углерода с такой же орбиталью другого. Поворот одного из атомов не влияет на перекрытие орбиталей. Предпочтительная конфигурация образуется благодаря тому, что атомы водорода, присоединенные к двум атомам углерода, стремятся по возможности избегать друг друга, но молекула легко может повернуться и перейти из одной предпочтительной конфигурации в другую без изменения характера перекрытия углерод-углеродной sp3-орбитали. Это резко отличается от ситуации в этилене, где углерод-углеродная связь двойная.

На рис. 14.15 изображены орбитали, служащие для образования двойной связи в этилене. Каждый атом углерода использует три гибридные sp2-орбитали для образования -связей с атомами водорода и другим атомом углерода, как показано в верхней части рис. 14.15. Эти три sp2-орбитали у каждого атома углерода образованы суперпозицией 2s-, 2px- и 2py-орбиталей. Данные орбитали и -связи расположены в плоскости страницы, которая принимается за плоскость xy. При этом у каждого атома углерода остается одна 2pz-орбиталь, которая направлена перпендикулярно плоскости страницы. Как показано в нижней части рис. 14.15, две 2pz-орбитали перекрываются боками и образуют -связь. Если бы удалось захватить один из атомов углерода и начать поворачивать его, то 2pz-орбиталь отклонилась бы от оси z в направлении плоскости xy. Такой поворот уменьшил бы перекрытие двух 2pz-орбиталей, разрушая -связь. Как показано в таблице, которая приводится вслед за обсуждением рис. 13.9, двойная связь намного сильнее одиночной. Поэтому потребовалась бы очень большая энергия, чтобы выполнить поворот вокруг двойной углерод-углеродной связи, поскольку для этого необходимо разрушить -связь. Именно этот огромный потенциальный энергетический штраф препятствует повороту.

Природа производит цис-жиры, а химическая обработка — транс-жиры

Ненасыщенные жиры — как мононенасыщенные, так и полине­насыщенные — образуются в природе почти исключительно в ­цис-конформациях. Небольшое количество транс-жиров обнаружено в мясе и молоке коров, овец, коз и других жвачных животных. Однако огромное количество транс-жиров присутствует в частично гидрогенизированном масле, и, кроме того, транс-жиры обнаружены в гидрогенизированном масле, поскольку химическая обработка не позволяет добиться стопроцентного насыщения жирных кислот. Необработанные мононенасыщенные и полиненасыщенные растительные жиры содержат только цис-конформации в местах двойных связей. Частичная гидро­генизация масла натурального происхождения порождает большое количество транс-жиров. Переход из цис-конформации в транс-конформацию случается во время процесса гидроге­низации.

Как уже отмечалось, соединенные двойными связями атомы углерода, находясь в реакторе при высокой температуре, связываются с металлическим катализатором. Пока сохраняется связь с катализатором, углерод-углеродная связь фактически является одиночной, и могут происходить повороты, переводящие цис-конформацию в транс-конформацию. Атом катализатора может отсоединиться от молекулы жира прежде, чем произойдет гидрогенизация, и в таком случае двойная связь не гидрогенизируется, но она может поменять конформацию. Если переход из цис-конформации в транс-конформацию случится до того, как молекула освободит катализатор, то результатом будет переход цис-конформации в транс-конформацию без гидрогенизации двойной связи. Обработка, предназначенная для уменьшения числа двойных связей, не устраняет их все. Однако существенное число двойных связей переходит из цис-конформации в транс-конформацию. В результате частично гидрогенизированное масло может содержать значительное количество двойных связей в транс-конформации.