Добавить в цитаты Настройки чтения

Страница 55 из 82

Хотя в каждой из трех молекул два атома углерода связаны­ друг с другом, порядок их связи вносит большие различия. В табл. 14.1 приводятся значения длины и энергии C–C-связей для этих трех молекул в зависимости от порядка связи. С увеличением порядка длина связи значительно сокращается, а энергия почти утраивается при переходе от одиночной связи к тройной.

Рис. 14.14. Этан: одиночная связь, тетраэдрическая конфигурация связей углерода. Этилен: двойная связь, треугольная конфигурация связей углерода. Ацетилен: тройная связь, линейная конфигурация связей углерода

Таблица 14.1. Одиночные, двойные и тройные C–C-связи

 

Порядок связи

Длина связи

Энергия связи

Этан

Одиночная (1)

1,54 Å

5,8 · 10–19 Дж

Этилен

Двойная (2)

1,35 Å

8,7 · 10–19 Дж





Ацетилен

Тройная (3)

1,21 Å

16 · 10–19 Дж

Двойная углерод-углеродная связь — этилен

Для начала рассмотрим связь в молекуле этилена. Из рис. 14.15 видно, что углеродные центры здесь имеют треугольную форму. Как уже говорилось, для получения треугольной формы связей атом углерода будет использовать три sp2-гибридизированные атомные орбитали для образования МО (см. рис. 14.7). Углерод имеет четыре валентные орбитали, служащие для образования химических связей: 2s, 2px, 2py и 2pz. В верхней части указанного рисунка молекула этилена располагается в плоскости xy. Таким образом, атомы углерода и водорода лежат в плоскости страницы, которая и есть xy. Чтобы образовать треугольную конфигурацию гибридных sp2-орбиталей, служащих для формирования трех связей, оба атома углерода используют 2s-, 2px- и 2py-орбитали. С тремя гибридными sp2-орбиталями каждый атом углерода будет создавать три -связи: одну — с другим атомом углерода и две — с атомами водорода. Эти -связи показаны в верхней части рис. 14.15.

Когда углерод образует три гибридные sp2-орбитали из 2s-, 2px- и 2py-орбиталей, у него остается 2pz-орбиталь, которая не принимает участия в -связывании. В верхней части рис. 14.15 2pz-орбиталь направлена поперек страницы, выступая над ней и позади нее. Каждый атом углерода имеет один неспаренный электрон на 2pz-орбитали. В нижней части рисунка молекула этилена изображена повернутой. Сигма-связь показана линией, соединяющей атомы. Положительные лепестки 2pz-орбиталей перекрываются конструктивно, и то же самое происходит с отрица­тельными лепестками. Две 2pz-орбитали объединяются и обра­зуют -связывающую молекулярную орбиталь (см. рис. 13.3). Это -связь, поскольку у нее нет электронной плотности на ­линии, соединяющей центры атомов углерода. Совокупный результат состоит в том, что два атома углерода имеют двойную связь, состоящую из -связи, образованной sp2-орбиталями каждого атома, и -связью, образованной 2pz-орбиталями тех же атомов.

Вращение вокруг двойной углерод-углеродной связи невоз­можно. Для него потребовалось бы, чтобы перекрытие двух 2pz-орбиталей становилось все хуже по мере увеличения угла поворота. При угле, равном 90°, две 2p-орбитали были бы направлены перпендикулярно друг другу и не давали бы никакого перекрытия. Такой поворот разрушил бы -связь, на что потребовалось бы значительное количество энергии.

Рис. 14.15. Орбитали, образующие двойную связь в этилене. Вверху: каждый атом углерода использует три гибридные sp2-орбитали для образования трех -связей в треугольной конфигурации. Страница соответствует плоскости xy, ось z направлена перпендикулярно этой плоскости. Внизу: каждый атом углерода имеет 2pz-орбитали, которые не используются в sp2-гибридизации. 2pz-орбитали объединяются и порождают -связывающую молекулярную орбиталь, которая дает вторую связь между атомами углерода

Как уже говорилось, измерения и теория позволили определить, что молекула бутана в жидкой фазе поворачивается вокруг одиночной C–C-связи примерно за 50 пс. Для этана это время составляет около 12 пс. Бутан вращается вокруг одиночной C–C-связи медленнее этана, поскольку содержит две дополнительные метильные группы (CH3) — по одной с каждой стороны от двух центральных атомов углерода. Если поместить этилен в такую же жидкую среду при комнатной температуре, то, по грубым оценкам, потребуется около ста миллиардов лет для того, чтобы совершить поворот вокруг двойной связи, поскольку на разрушение -связи требуется огромное количество энергии. ­Таким образом, в любом практическом смысле двойная связь (как и тройная) ­препятствует вращательной изомеризации между конформерами, которые различаются конфигурацией относительно двойной связи.

Тройная углерод-углеродная связь — ацетилен

Ацетилен образует тройную связь между атомами углерода, во многом аналогичную двойной связи в этилене. Каждый атом углерода имеет для образования химических связей четыре атомные орбитали: 2s, 2px, 2py и 2pz. Молекула ацетилена линейная (см. рис. 14.14). Примем линию, вдоль которой выстроена молекула, за ось x. Тогда каждый атом углерода образует две гибридные sp-орбитали из своих 2s- и 2px-орбиталей. Эти две гибридные sp-орбитали атома углерода служат для образования двух -связей: одной — с другим атомом углерода и одной — с атомом водорода. В результате остаются неиспользованными две 2p-орбитали у каждого атома углерода — 2py и 2pz. 2pz-орбитали атомов углерода образуют одну -связывающую МО, a 2py-орбитали — другую. В результате два атома углерода оказываются соединены тройной связью: одной -связью и двумя -связями.

В последующих главах мы будем обсуждать ряд типов молекул, таких, например, как спирты, органические кислоты, крупные углеводороды и углеродсодержащее топливо — уголь, нефть и природный газ. Обсуждение небольших спиртовых молекул позволит нам понять, что такое спирты и почему небольшие различия в их строении могут иметь огромное значение, если вы решите выпить что-то, отличное от этанола (спирта, содержащегося в пиве). Эти идеи позволят нам понять, почему одни молекулы растворимы в воде, а другие нет и каким образом мыло (разновидность крупных органических молекул) позволяет растворяться в воде нерастворимым жирам. В связи с вопросом о жирах и транс-жирах мы разберемся в том, насколько важна неспособность двойных связей подвергаться вращательным структурным изменениям. Мы обсудим, что происходит, когда горит основанное на углероде топливо и почему при одинаковом количестве выделяемой энергии одно топливо дает больше парникового углекислого газа, а другое — меньше. То, что углекислый газ является парниковым, хорошо известно, но почему? Мы увидим, как сочетание двух фундаментальных квантовомеханических эффектов делает диоксид углерода мощным парниковым газом.