Добавить в цитаты Настройки чтения

Страница 54 из 82

На рис. 14.10 представлены шаростержневая (вверху) и объемная (внизу) модели этана. В совокупности на рис. 14.9 и 14.10 приведено пять различных представлений молекулы этана. Лишь объемная модель дает близкое к реальности представление о пространственном строении молекулы. Остальные четыре модели преувеличивают для ясности расстояния между атомами. Атомы в шаростержневой и объемной моделях на рис. 14.10 имеют одинаковые размеры. В шаростержневой модели связи изображены цилиндрами, а атомы отделены друг от друга связями. Важно понимать, что связи возникают за счет образования молекулярных орбиталей. Электроны совместно используются атомами, которые не отделены друг от друга, как в шаростержневой модели или в других представлениях. Поверхность объемной модели охватывает бóльшую часть электронного распределения вероятностей. В объемной модели атомы окрашены по-разному, чтобы их легче было различать.

Рис. 14.10. Модель этана: шаростержневая (вверху) и объемная (внизу). Атомы в обеих моделях изображаются шарами одинакового размера

Нам понадобится обсудить еще одну относительно простую молекулу — молекулу пропана, прежде чем углеводороды станут достаточно большими, чтобы начали обнаруживаться некоторые их общие свойства. Пропан состоит из трех атомов углерода и восьми атомов водорода. Его химическая формула — C3H8. Это формула ничего не говорит о том, как соединены атомы. Ее также можно записать в виде H3C–H2C–CH3. При такой записи становится понятно, что атомы водорода соединены с атомами углерода. Атомы углерода соединены друг с другом одиночными связями. Концевые атомы углерода соединены с тремя атомами водорода и одним атомом углерода. Центральный атом углерода соединен с двумя атомами водорода и двумя атомами углерода. На рис. 14.11 приведены два представления молекулы пропана. На верхней диаграмме обозначены связи и углы между ними. Атомы углерода имеют тетраэдрическую конфигурацию связей с углами C–C–C и H–C–H, равными 109,5°. В нижней части рисунка представлена шаростержневая модель пропана.

Рис. 14.11. Диаграмма и шаростержневая модель пропана C3H8. Атомы углерода находятся в центрах тетраэдров

Большие углеводороды имеют множество структур

Для метана, этана и пропана существует лишь один способ, которым их атомы могут быть связаны друг с другом, и только одна пространственная конформация. Бутан и все более крупные углеводороды имеют множество структурных конфигураций (способы, которыми атомы связаны друг с другом) и более одной пространственной конформации для конкретной структурной конфигурации. Бутан содержит четыре атома углерода. Его химическая формула — C4H10. Имеется две различные структурные формы бутана. Их называют структурными изомерами. Их молекулы содержат одинаковое число атомов углерода и водорода, но они имеют совершенно разную форму. Бутан может быть н-бутаном, что означает нормальный бутан. Если взять молекулу пропана и добавить к ее концу еще один атом углерода, получится н-бутан. О нем говорят как о линейной цепи, поскольку атомы углерода в нем связаны не более чем с двумя другими атомами углерода — по одному с каждой стороны. Его молекула, как видно из шаростержневой модели, в действительности не является прямой, поскольку каждый атом углерода имеет тетраэдрическую конфигурацию связей, образованных с использованием четырех гибридных sp3-орбиталей.

На рис. 14.12 показано, что бутан имеет другой изомер, называемый изобутаном. В изобутане центральный атом углерода соединен с тремя другими атомами углерода и одним атомом водорода, а остальные атомы углерода соединены только с цент­ральным атомом углерода и тремя атомами водорода каждый. Все четыре атома углерода используют для образования связей sp3-гибридизированные атомные орбитали и имеют тетраэдри­ческую конфигурацию. Об изобутане также говорят как о раз­ветвленной цепи. Тот факт, что бутан может при одинаковом числе атомов углерода и водорода иметь две разные структуры, очень важен. У молекулы с бóльшим числом атомов углерода число возможных­ вариантов строения может быть намного больше двух.

В дополнение к двум структурным изомерам н-бутан имеет две конформера. Конформеры — это различные формы, конформации, одного и того же набора атомов, соединенных одним и тем же способом. Они различаются за счет того, что вокруг одиночной связи C–C может происходить вращение.





Рис. 14.12. Два структурных изомера бутана C4H10. Вверху CH3 соответствует углероду, связанному с тремя атомами водорода. н-бутан— это линейная цепь в том смысле, что каждый атом углерода связан не более чем с двумя другими атомами углерода. Изобутан имеет разветвленную структуру. Центральный атом углерода связан с тремя другими атомами углерода

На рис. 14.13 представлен н-бутан в двух конформациях, называемых транс и гош. Оба изображенных на рисунке конформера являются н-бутаном, поскольку атомы углерода соединены одинаковым образом. Если взять верхний конформер и выполнить поворот вокруг средней углерод-углеродной связи на 120° в направлении, указанном стрелкой, то получится гош-форма. У транс-конформера все атомы углерода лежат в одной плоскости. В гош-форме три атома углерода лежат в плоскости страницы, а четвертый выступает над ней. В действительности существует и другая гош-форма, которая образуется путем поворота транс-формы вокруг средней C–C-связи на 120° в направлении, противоположном указанному стрелкой. В этом случае те же три атома углерода остаются в плоскости страницы, а четвертый оказывается позади нее. Эти два гош-конформера в некотором смысле имеют одинаковую форму, но они не идентичны. Они подобны левой и правой перчаткам. Как и перчатки, эти две гош-формы нельзя совместить одну с другой. Они являются зеркальными копиями друг друга. Углеродная основа, которая может иметь левую и правую форму в зависимости от направления вращения, называется хиральной.

Рис. 14.13. Два конформера н-бутана. Гош-форма получается из транс-формы вращением на 120° вокруг средней C–C-связи

Вращение вокруг одиночной C–C-связи, переводящее молекулу между транс- и гош-конформациями, в жидкости при комнатной температуре может происходить очень быстро. Согласно теории, подтвержденной недавними экспериментами с ультрабыстрым инфракрасным лазером, гош-транс-переходы занимают всего 50 пс (1 пикосекунда = 10–12 с), или 50 триллионных долей секунды. Поэтому в жидкости при комнатной температуре эти две формы бутана настолько быстро сменяют друг друга, что их невозможно изолировать в качестве отдельных молекул.

Двойные и тройные углерод-углеродные связи

Если вокруг одиночной C–C-связи совершить поворот очень легко, то для двойной или тройной углерод-углеродной связи это совсем не так. В главе 13 говорилось, что молекула O2 имеет двойную связь, а молекула N2 — тройную. Углерод-углеродные связи могут быть одиночными, двойными или тройными. Вращение вокруг двойной или тройной C–C-связи практически невозможно. Поэтому двойные связи могут фиксировать различные конформации молекул, имеющих одинаковые структурные изомеры. Как будет показано в главе 16, именно отсюда возникает термин «транс-жиры». Однако прежде, чем мы доберемся до обсуждения таких больших молекул, как транс-жиры, нам надо поговорить о двойных и тройных C–C-связях.

В обсуждавшихся до сих пор соединениях углерод использует четыре sp3-гибридизированные атомные орбитали для создания четырех одиночных -связей с другими атомами. В таких соединениях каждый атом углерода имеет тетраэдрическую конфигурацию четырех связей. На рис. 14.3 изображена молекула формальдегида. Формальдегид содержит атом углерода с двойной связью. Чтобы показать, каким образом углерод создает одиночные, двойные и тройные связи, мы рассмотрим химические связи в этане, этилене и ацетилене. Эти три вещества имеют химические формулы H3C—CH3, H2C=CH2 и HCCH соответственно. Этан ­имеет одиночную связь, этилен — двойную, а ацетилен — тройную. На рис. 14.14 показано строение этих трех молекул. В этане каждый атом углерода образует четыре связи в тетраэдрической конфигурации. В этилене каждый атом углерода образует три связи в форме треугольника, а в ацетилене атомы углерода образуют две связи, вытянутые в линию.