Добавить в цитаты Настройки чтения

Страница 48 из 82

Корректное предсказание парамагнитных свойств O2, сделанное на основе анализа диаграммы энергетических уровней МО, — это замечательный результат. Магнитный момент O2 — это сугубо квантовый эффект, и наше предсказание того, что O2 является парамагнетиком, появилось благодаря применению правила Хунда. Следуя определенным правилам, мы нарисовали линии, отвечающие энергетическим уровням. Затем, следуя другим правилам, мы разместили на этих линиях энергетических уровней стрелки, направленные вверх и вниз (расселили по ним электроны). На основе этих линий и стрелок мы смогли предсказать, что молекула кислорода является магнитной, хотя молекулы фтора и азота таковыми не являются.

Молекула азота

На рис. 13.9 представлена заполненная диаграмма энергетических уровней МО для азота N2. Атом азота находится в Периодической таблице непосредственно слева от кислорода. Обратите внимание, что есть перестановка в порядке следования связывающих МО, порожденных p-электронами. Подробные квантовомеханические вычисления позволяют получить порядок следования и значения энергетических уровней МО. У азота этот порядок иной, чем у O2 и F2. Атом азота имеет семь электронов, так что молекула N2 содержит 14 электронов. Как и в случае с F2 и O2, 1s- и 2s-электроны не участвуют в связывании, поскольку они заполняют как связывающие, так и разрыхляющие МО. На заполнение этих МО уходит восемь из 14 электронов. Остальные шесть электронов расселяются по трем связывающим МО — одной -МО и двум -МО. На разрыхляющих -МО и -МО, образованных pz-орбиталями, электронов нет. Таким образом, N2 имеет связь порядка 3, то есть тройную связь. Тройная связь сильнее и короче, чем двойная или одиночная. Обратите внимание, что в молекуле N2 нет неспаренных электронов. Она не является парамагнитной. При низкой температуре (ниже –196°C) азот становится жидким. Однако сдвинуть пробирку с жидким азотом с помощью магнита не получится, поскольку у него нет неспаренных спинов.

Одиночные, двойные и тройные связи

В главе 11, обсуждая связывание на основе положения атома в Периодической таблице, мы воспользовались представлением о том, что атом стремится сформировать ковалентные связи таким образом, чтобы совместное использование электронов позволяло ему достичь конфигурации благородного газа. Для обсуждаемых здесь элементов второй строки Периодической таблицы — азота, кислорода и фтора — таким благородным газом является неон. Как уже говорилось, атом фтора, который на один электрон отстает от конфигурации атома неона, будет совместно с другим атомом использовать один электрон. Атом кислорода, на два элемента отстающий от конфигурации атома неона, будет использовать два электрона, а атом азота, которому до неона не хватает трех электронов, будет совместно использовать три электрона.

Рис. 13.9. Диаграмма энергетических уровней МО для молекулы N2. Имеется одна дополнительная пара -связывающих электронов и две дополнительные пары -связывающих электронов. N2 имеет тройную связь

Здесь мы увидели, что F2 образует одиночную связь, O2 — двойную связь, а N2 — тройную. Одиночный, двойной или тройной тип связи между атомами обозначают F−F, O=O и NN соответственно. О связи между атомами принято думать как о совместно используемых электронах. Ковалентная связь — это связь, образованная совместным использованием пары электронов. Двойная связь — это совместное использование двух пар электронов, тройная — трех пар. Когда связывающие МО в точности компенсируются разрыхляющими МО, электроны в действительности не используются атомами совместно. Они находятся на молекулярных орбиталях, но связывающие МО порождают конструктивную интерференцию волн амплитуды вероятности, а разрыхляющие МО — деструктивную интерференцию и гасят друг друга. Электроны в этом случае называются неподеленными парами. Эти пары электронов не дают вклада в связывание. Только одиночная связь, то есть совместно используемая пара электронов в молекуле F2, обеспечивает каждому из атомов F дополнительный электрон, необходимый им для достижения конфигурации атома Ne. В молекуле O2 двойная связь (совместное использование двух пар электронов) обеспечивает по два дополнительных электрона каждому атому O, что позволяет им достичь конфигурации атома Ne. В молекуле N2 тройная связь (совместное использование трех пар электронов) обеспечивает три дополнительных электрона каждому атому азота, наделяя их конфигурацией атома Ne.

В последовательности молекул F2, O2 и N2 мы обнаружили одиночную, двойную и тройную связи. Совместное использование электронов дает каждому атому конфигурацию как у атома Ne. ­Следующий элемент, находящийся слева от азота в Периодической таблице, — это углерод. Можно было бы предположить, что углерод будет формировать четверную связь, чтобы образовать молекулу C2 и достичь конфигурации атома Ne. Однако C2 не существует как стабильная молекула. Причину этого можно понять, если обратиться к рис. 13.9, где приведена диаграмма MO для N2, и удалить два электрона с наибольшей энергией, то есть со связывающей МО . Это дало бы электронную конфигурацию молекулы C2. Однако она имела бы не четверную, а двойную связь, образованную четырьмя электронами, находящимися на двух связывающих -МО. Наличие только двух связей означает, что атомы углерода в молекуле C2 получили бы за счет совместного использования только по два, а не по четыре электрона, которые нужны каждому из них, чтобы достичь конфигурации атома Ne. Для достижения этой конфигурации углероду нужно образовать четыре ­связи, как, например, в молекуле CH4. Он не может образовать четыре связи в молекуле C2, и поэтому такой молекулы не существует.********

Молекула F2 имеет одиночную связь, O2 — двойную связь, N2 — тройную. Из табл. 13.1 видно, что порядок связи сильно влияет на ее свойства. Чем больше порядок, тем меньше длина и выше энергия химической связи. Энергия связи — это та энергия, которую нужно передать в молекуле, чтобы разрушить связь. Разрушение связи означает разведение атомов на такое расстояние, на котором они перестают чувствовать друг друга. В следующей главе будет показано, что углерод может создавать одиночные, двойные и тройные связи с другим атомом углерода, если одновременно он образует связи с другими атомами, такими как атом водорода. Однако, прежде чем переходить к обсуждению молекул крупнее двухатомных, необходимо выйти за пределы гомонуклеарных двухатомных молекул и познакомиться с гетеронуклеарными двухатомными молекулами, чтобы понять, как молекулярные орбитали формируются неодинаковыми атомами.

Таблица 13.1. Влияние порядка связи на ее свойства

 

F2

O2

N2





Порядок связи

Одиночная (1)

Двойная (2)

Тройная (3)

Длина связи, Å

1,42

1,21

1,10

Энергия связи, 10–19 Дж

2,6

8,3

15,6

Гетеронуклеарные двухатомные молекулы

В гомонуклеарных двухатомных молекулах МО образуются из атомных орбиталей с одинаковой энергией. В гетеронуклеарных двухатомных молекулах, например в молекуле фтороводорода (HF), два атома различаются. Поскольку атомы различны, энергия атомных орбиталей одного атома не совпадает с энергией атомных орбиталей другого. В молекуле HF атом водорода имеет один электрон на 1s-орбитали. Атом F имеет девять электронов на орбиталях 1s, 2s и 2p. Молекулы F2 и H2 имеют одиночные связи. На рис. 13.6 видно, что одиночная связь в F2 — это -связь, возникшая за счет связывающей МО . Эта связывающая МО формируется двумя атомными 2pz-орбиталями, по одной у каждого атома F. Молекула H2 имеет одну -связь за счет связывающей МО, образованной двумя 1s-орбиталями (см. рис. 12.7). При образовании молекулы HF встает вопрос о том, какая орбиталь F будет объединяться с 1s-орбиталью H для получения МО, обеспечивающей связывание. Расчеты, проведенные в соответствии с квантовой теорией, показывают, что близкие по энергии состоя­ния (атомные орбитали) могут объединяться и порождать МО с совместным использованием электронов. Атомные орбитали с сильно различающимися по энергии состояниями образуют МО, которые, по сути, эквивалентны атомным орбиталям и не дают вклада в связывание.