Добавить в цитаты Настройки чтения

Страница 7 из 19



Люди уже обеспокоены тем, как отслеживается история просмотра веб-страниц. Существуют опасения по поводу отслеживания местоположения пользователей с помощью приложений для мобильных телефонов и GPS-систем. Раз несанкционированное использование больших данных возможно, рано или поздно кто-нибудь попытается это сделать. Значит, необходимо предпринять шаги, чтобы этого не допустить. Организации должны четко объяснить, как они будут обеспечивать безопасность данных и как будут их использовать, если они хотят получить разрешение пользователей на их сбор и анализ.

Почему большие данные необходимо укротить

Многие организации пока мало используют большие данные. На ваше счастье, если вы до сих пор игнорировали большие данные, в 2012 году ваша организация не слишком отстала от остальных (если только вы не относитесь к таким отраслям, как электронная коммерция, – анализ больших данных уже стал неотъемлемой частью этой сферы). Однако скоро все изменится, поскольку развитие этого направления быстро набирает скорость. До сих пор большинство организаций упускали возможность оказаться впереди всех, и для многих из них это вполне нормально. В настоящее время еще есть шанс опередить остальных. Через несколько лет любая организация, которая не занимается анализом больших данных, безнадежно отстанет. Осваивать большие данные необходимо уже сейчас.

Нечасто компании удается воспользоваться совершенно новыми источниками данных, чтобы извлечь из них пользу для своего бизнеса, пока конкуренты не сделали то же самое. Такую возможность предоставляют сегодня большие данные. У вас есть шанс опередить своих конкурентов. В ближайшие годы мы увидим множество примеров того, как с помощью анализа больших данных компании полностью трансформируют себя; как конкуренты были застигнуты врасплох и остались далеко позади. Речь идет не только о таких модных новых индустриях, как электронная коммерция. Уже сейчас в публикациях, на конференциях и в других источниках приводятся убедительные примеры прорыва, в том числе компаний, работающих в скучных, старых и тяжеловесных отраслях. Мы расскажем об этом в главах 2 и 3.

Ваша организация должна начать процесс освоения больших данных уже сейчас. Пока что, если вы до сих пор игнорировали большие данные, то лишь упустили возможность быть в авангарде. Сегодня вы еще можете оказаться впереди всех. А если будете оставаться в стороне, через несколько лет окажетесь далеко позади. Если ваша организация уже занимается сбором данных и использует анализ в процессе принятия решений, то переход к большим данным не будет проблемой. Это просто расширение той деятельности, которой вы занимаетесь сегодня.

Фактически решение об использовании больших данных не должно стать проблемой. Большинство организаций уже подходят к сбору и анализу данных как к одной из основных частей своей стратегии. Хранилища данных, отчетность и анализ используются повсеместно. Если организация понимает, что данные представляют собой ценность, работа с большими данными будет лишь расширением ее деятельности. Не позволяйте скептикам убедить вас в том, что исследование больших данных не стоит затраченных усилий, или что их ценность еще не доказана, или что это слишком рискованно. Те же самые доводы помешали бы прогрессу, достигнутому за последние несколько десятилетий в области анализа данных. Обратите внимание сомневающихся на то, что работа с большими данными – это лишь продолжение того, что организация уже делает. Большие данные не представляют собой чего-то принципиально нового, и их не следует бояться.

Структура больших данных

В этой книге часто говорится о том, что данные могут быть структурированными, неструктурированными, полуструктурированными или даже мультиструктурированными. Большие данные нередко описываются как неструктурированные, а традиционные данные – как структурированные. Однако границы между ними не столь ясны, как можно понять из названия. Рассмотрим три типа структуры данных с точки зрения неспециалиста. Технические детали выходят за рамки данной книги.

Большая часть традиционных источников данных – полностью структурированные. Это означает, что традиционные источники предоставляют данные в четко предопределенном формате. Он не меняется день ото дня или в зависимости от обновления. В случае торговли акциями в первом поле может указываться дата в формате ДД/ММ/ГГГГ. Далее может идти 12-значный номер счета. Затем может быть указан символ акции, состоящий из трех-пяти знаков. И т. д. Каждый фрагмент используемой информации известен заранее, представлен в определенном формате и подчинен определенному порядку. Это облегчает работу.



Источники неструктурированных данных – а к ним относятся текстовые данные, видео– и аудиоданные – вы не можете контролировать. Вы получаете то, что получаете. Изображение подразумевает такой формат, при котором отдельные пикселы располагаются в строках, однако их взаимное расположение, определяющее то, что видит зритель, существенно различается в каждом конкретном случае. Приведенные примеры источников больших данных относятся к совершенно неструктурированным. Однако значительная часть данных относится к категории полуструктурированных.

Полуструктурированные данные подразумевают логическую схему и формат, который может быть понятным, но недружественным к пользователю. Иногда полуструктурированные данные называются мультиструктурированными. В потоке таких данных кроме ценных фрагментов информации может присутствовать множество ненужных и бесполезных данных. Чтение полуструктурированных данных с целью их анализа вовсе не так же просто, как файла определенного формата. Чтобы прочитать полуструктурированные данные, необходимо использовать сложные правила, которые динамически определяют, что следует делать после чтения каждого фрагмента информации.

Логи, собираемые в журнальных файлах, – прекрасный пример полуструктурированных данных. Они выглядят довольно уродливо, однако каждый фрагмент информации служит определенной цели. Служит ли любой из фрагментов журнала именно вашей цели – это совсем другой вопрос. На рис. 1.1 изображен пример необработанных данных интернет-журнала.

Рис. 1.1. Пример необработанных данных интернет-журнала

Многие источники больших данных на самом деле являются полуструктурированными или мультиструктурированными, а не совсем неструктурированными. Такие данные подразумевают логическую схему, которая позволяет извлечь информацию для анализа. С ними просто сложнее работать, чем с традиционными источниками структурированных данных. Использование полуструктурированных данных требует дополнительного времени и усилий для того, чтобы определить наилучший способ их обработки.

Хотя на первый взгляд может показаться иначе, данные интернет-журнала подчинены определенной логике. В них присутствуют поля, разделители и значения, как и в структурированном источнике. При этом они не согласованы друг с другом и не представляют собой набор. Текст журнала, сгенерированный только что щелчком кнопкой мыши на сайте, может быть длиннее или короче, чем текст, сгенерированный щелчком кнопкой мыши на другой странице минуту назад. И все-таки необходимо понять, что полуструктурированные данные не лишены логики. Вполне возможно найти взаимосвязь между различными их фрагментами – просто это потребует больше усилий, чем в случае со структурированными данными.

Профессиональных аналитиков больше тревожат неструктурированные данные, чем полуструктурированные. Возможно, им придется побороться с полуструктурированными данными, чтобы подчинить их своей воле, но они это сделают. Они смогут привести полуструктурированные данные в хорошо структурированную форму и включить в свои аналитические процессы. По-настоящему неструктурированные данные приручить гораздо сложнее, и это будет оставаться головной болью для организаций по мере того, как они будут учиться справляться с полуструктурированными данными.