Страница 5 из 19
Легко понять, почему большие данные сравнивают с приливной волной и почему ее приручение – настоящий вызов! Методы, процессы и системы анализа, внедренные в организациях, будут использоваться до предела, а возможно, и сверх предела. Необходимо разработать дополнительные методы и процессы анализа на базе обновленных технологий и методов для того, чтобы эффективно анализировать большие данные и действовать на основании полученных результатов. Мы коснемся всех этих тем в данной книге, чтобы продемонстрировать целесообразность укрощения больших данных.
Что важнее: «большие» или «данные»?
А теперь устроим небольшую викторину! Остановитесь на минуту и попробуйте ответить на следующий вопрос, прежде чем читать дальше: что является самым важным в понятии «большие данные»: 1) слово «большие», 2) слово «данные», 3) оба слова или 4) ни одно из них? Задумайтесь об этом на минуту и, определившись с ответом, переходите к следующему абзацу. Мысленно проиграйте музыку, которую включают в игре, пока участники думают.
Теперь проверим, правы ли вы. Правильный ответ – вариант 4). В термине «большие данные» ни одну из составных частей нельзя считать важнейшей. Важнее всего то, как организации используют большие данные. Анализ больших данных, производимый вашей организацией, в сочетании с действиями, предпринимаемыми для улучшения вашего бизнеса, – вот что имеет значение.
Наличие большого источника данных само по себе не является дополнительной ценностью. Возможно, ваши данные больше, чем мои. Кого это волнует? На самом деле наличие любого набора данных, вне зависимости от размера, само по себе не добавляет какой-либо ценности. Собранные, но не используемые данные имеют не большее значение, чем старый хлам, хранящийся на чердаке или в подвале. Данные не имеют значения до тех пор, пока не будут помещены в контекст и использованы. Мощь больших данных, как, впрочем, любого источника данных, заключается в том, что с ними делают. Как они анализируются? Какие действия предпринимаются на основании полученных результатов? Как эти данные используются для совершенствования бизнеса?
Вокруг больших данных поднята такая шумиха, что многие полагают: только благодаря большому объему, скорости передачи и разнообразию они важнее всех других. Это не так. Как мы увидим далее в этой главе (в разделе «Большая часть больших данных не имеет значения»), в больших данных доля бесполезного или малозначимого контента намного выше, чем в любом привычном источнике данных. Когда вы отберете действительно нужную вам информацию, источник больших данных может показаться вам не таким уж большим. Но это ничего не значит, поскольку после обработки данных их объем не имеет значения. Важно то, что вы будете делать с полученными результатами.
Значимость большим данным придает вовсе не то, что они большие, и даже не то, что они представляют собой данные. Важно то, как вы анализируете и применяете эти данные для развития своего бизнеса.
Что делает большие данные интересными для вас и вашей организации? Вовсе не то, что они «большие». Самое интересное связано с новыми мощными средствами их анализа. Об этом и поговорим.
Чем большие данные отличаются от традиционных данных?
Большие данные отличаются от традиционных данных рядом важных характеристик. Не каждый источник больших данных имеет все перечисленные особенности, однако большинству свойственно следующее.
Во-первых, большие данные часто автоматически генерируются машиной без участия человека. Традиционные источники данных всегда предполагают присутствие человека. Возьмем, к примеру, розничные или банковские транзакции, записи с содержанием телефонных звонков, доставку товаров или выставление счетов на оплату. Все эти действия подразумевают присутствие человека, который способствует созданию данных. Кто-то должен внести деньги, сделать покупку, позвонить по телефону, отправить посылку или сделать платеж. В каждом случае частью процесса создания новых данных остается человек, совершающий какие-либо действия. С большими данными дело обстоит иначе. Многие источники больших данных генерируются вообще без взаимодействия с человеком, например встроенный в двигатель датчик генерирует данные, даже если никто его об этом не просит.
Во-вторых, большие данные обычно соотносятся с совершенно новыми источниками данных. Это не просто расширение возможностей сбора существующих данных. Например, через интернет потребители могут взаимодействовать с банком или магазином, однако выполняемые ими операции принципиально не отличаются от традиционных. Они просто выполняют те же операции через другой канал. Организация может собрать данные о транзакциях, совершенных через интернет, однако они мало чем отличаются от транзакций, которые совершались раньше. Тем не менее сбор данных о поведении потребителей в процессе совершения транзакции предоставляет принципиально новую информацию, о которой мы подробно поговорим во второй главе.
Иногда больший объем данных может превратиться в нечто новое. Например, вы, вероятно, в течение многих лет каждый месяц вручную снимали показания счетчика электроэнергии. Можно ли считать, что интеллектуальный счетчик, фиксирующий показания каждые 15 минут, предоставляет те же самые данные? Или эта информация совершенно иного качества, открывающая возможности для проведения более глубокого анализа? Об этом речь пойдет в третьей главе.
В-третьих, многие источники больших данных не замышлялись как дружественные к пользователю. Впрочем, некоторые из них вообще не замышлялись! Возьмем, к примеру, текстовые потоки от сайта социальных медиа. Пользователей невозможно убедить соблюдать определенные правила грамматики, синтаксиса или лексические нормы. Когда люди публикуют запись, вы получаете то, что получаете. Работать с такими данными в лучшем случае трудно, а в худшем – отвратительно. О текстовых данных говорится в главах 3 и 6. Большинство традиционных источников данных дружественны к пользователю. Например, системы для отслеживания транзакций предоставляют данные в понятной форме, что облегчает их загрузку и работу с ними. Частично это было продиктовано исторически сложившейся необходимостью в эффективном использовании пространства. Для избыточных данных просто не было места.
Традиционные источники данных с самого начала разрабатывались с учетом определенных требований. Каждый бит данных имел высокую ценность, иначе он не был бы учтен. Поскольку стоимость хранения данных стремится к нулю, источники больших данных, как правило, содержат все, что может быть использовано. Это означает, что при проведении анализа необходимо разбираться в огромном количестве хлама.
И, наконец, потоки больших данных далеко не всегда представляют собой особую ценность. Большая часть данных может быть вообще бесполезной. В журнале логов содержится как очень полезная информация, так и не имеющая ценности. Необходимо отсортировать мусор и извлечь ценные и релевантные фрагменты информации. Традиционные источники данных с самого начала разрабатывались так, чтобы содержать на 100 % релевантные данные. Это было связано с ограничениями масштабируемости: включение в поток данных чего-то неважного слишком дорого обходилось. Мало того что записи данных были предопределены заранее – каждый фрагмент данных имел высокую ценность. С тех пор изменилось одно важное обстоятельство: мы более не ограничены объемом носителя. Это привело к тому, что большие данные по умолчанию включают всю возможную информацию, а позже приходится разбираться в том, что же из собранного имеет значение. Зато есть гарантия, что ничего не будет упущено, но усложняет процесс анализа больших данных.