Страница 17 из 19
• Ценные сведения может дать анализ обезличенных данных о клиентах, которым присваивается произвольный идентификационный номер. При этом ни аналитики, ни кто-либо другой не может определить личность каждого отдельного человека. В данном случае значение имеют только закономерности.
• Веб-данные позволяют подробно изучить покупательское поведение клиентов, их пути к покупке, исследовательское поведение и обратную связь. Это можно сравнить с чтением их мыслей.
• Веб-данные позволяют улучшить результаты в таких сферах, как следующее наилучшее предложение, моделирование потерь, моделирование отклика, сегментация клиентов, а также анализ эффективности платного поиска и онлайн-рекламы.
• Возможность опередить конкурентов скоро исчезнет. Начните работать с этим источником больших данных прямо сейчас!
Глава 3
Источники больших данных и их ценность
Не правда ли, было бы здорово получить на мобильный телефон сообщение о скидке на обед в ресторане, мимо которого вы проезжаете? Вам понравилось бы, если бы распорядитель казино дал вам $20, которые забыл заплатить вам крупье? Представьте, что вы можете быстро найти игроков онлайн-игры, чей стиль игры соответствует вашему, потому что игра может сообщить вам о том, кто они. Хотели бы вы снизить тариф на страхование автомобиля? Все это возможно благодаря большим данным.
В главе 2 шла речь о веб-данных, которые представляют собой наиболее широко используемый и признанный источник больших данных. Однако существует множество других источников больших данных, и все они имеют собственные области применения. Далеко не все из них хорошо известны. В этой главе мы подробно рассмотрим еще девять источников больших данных и способы их использования с целью предоставить вводную информацию о том, что собой представляет каждый из них. Затем рассмотрим некоторые способы их применения и значение, которое каждый источник данных представляет для бизнеса.
В главах 2 и 3 вы не найдете списка лучших источников, поскольку никто не возьмет на себя смелость утверждать, что именно эти источники больших данных наиболее важны. Порядок, в котором они перечислены, также не определяет их ценности. Задача в том, чтобы читатель узнал о доступных типах больших данных, а также о том, какие аналитические методы эти данные позволяют применять. Каждому читателю следует выбрать для себя по крайней мере некоторые из них.
Одна из наметившихся тенденций показывает, как одни и те же базовые технологии способны привести к появлению нескольких источников больших данных в различных отраслях. Кроме того, различные отрасли могут использовать одни и те же источники больших данных. Применение больших данных не сводится к одному способу. Их возникновение будет иметь долгосрочные последствия.
Речь пойдет о следующих источниках больших данных:
• Автострахование: значение телематических данных.
• Разные отрасли: значение текстовых данных.
• Разные отрасли: значение данных о времени и местоположении.
• Розничная торговля и производство: значение данных радиочастотной идентификации (RFID).
• Коммунальные предприятия: значение данных, генерируемых интеллектуальными сетями.
• Игровая индустрия: значение данных отслеживания фишек.
• Промышленные двигатели и оборудование: значение данных, полученных от датчиков.
• Видеоигры: значение телеметрических данных.
• Телекоммуникации и другие отрасли: значение данных, полученных из социальных сетей.
Автострахование: значение телематических данных
В сфере автострахования телематике стали уделять серьезное внимание. Телематика предполагает помещение в машину датчика, или «черного ящика», для сбора информации о том, что происходит с автомобилем. В зависимости от конфигурации это устройство отслеживает любое количество показателей, например скорость, пройденное расстояние или факт резкого торможения. Телематические данные позволяют страховым компаниям лучше оценить уровни риска клиента и более точно выбрать страховой тариф. Если не принимать в расчет проблемы конфиденциальности и представить крайний случай применения таких данных, то телематическое устройство может отследить, куда и когда ездил автомобиль, с какой скоростью он двигался и какие из его функций использовались.
Телематика позволяет снизить страховые тарифы для большинства водителей и увеличить прибыль страховых компаний. Как эти данные могут одновременно понизить тарифы и увеличить прибыль? Дело в том, что страховщики назначают размер страховых взносов исходя из оценки рисков. Использование традиционных методов оценки риска на основе демографических данных и персональной истории дорожных происшествий обеспечивает только общую картину. Особенно трудно охарактеризовать водителей, не попадавших в ДТП.
Страховые компании должны исходить из худшего сценария, поэтому они распределяют клиентов по группам с разной степенью риска, а затем принимают в расчет самый высокий уровень риска из присущих конкретной группе. Чем больше подробностей известно страховым компаниям о клиентах и их рисках, тем уже будет диапазон исков и, соответственно, тем в меньшей степени наихудший сценарий повлияет на повышение тарифа. Вот так одновременно тарифы могут снижаться, а прибыль компании повышаться. Страховщики могут точнее оценивать риски и уменьшить изменчивость прогнозируемых выплат.
Существуют страховые компании, которые используют телематические данные для страхования клиентов по всему миру, и число таких компаний растет. Ранние версии программ собирают минимальное количество информации об автомобилях. К примеру, они не отслеживают все места, в которых побывала машина. Эти программы фиксируют пройденное автомобилем расстояние, в какое время суток он находится в дороге, имело ли место превышение скорости и часто ли происходило резкое торможение. Это базовые данные, не создающие угрозу конфиденциальности. Поскольку приватные персональные данные не собираются, эта технология может получить более широкое распространение. Те же самые принципы применимы и в сфере коммерческой грузоперевозки. Установить тарифы на страхование грузовиков гораздо проще, если страховщик обладает более конкретными данными об их использовании.
Сначала телематические данные будут использоваться в качестве инструмента, обеспечивающего более эффективное страхование автомобилей и грузовиков. Со временем телематические устройства могут появиться в большом количестве других транспортных средств, что приведет к появлению новых способов использования телематических данных. Уже сегодня в автомобилях появляются бортовые компьютеры, однако телематические устройства могут вывести такие системы на совершенно новый уровень. Существуют очень интересные методы использования телематических данных. Рассмотрим некоторые из них.
Использование телематических данных
Распространение телематических данных сделает возможным применение фантастических аналитических методов. Представьте, что в миллионах или в десятках миллионов автомобилей в вашей стране находятся телематические устройства. Сторонняя исследовательская фирма получает у клиентов разрешение на сбор очень подробных анонимных телематических данных. В отличие от ограниченных данных, собранных для целей страхования, информация в этом примере включает поминутные или посекундные сведения об изменении скорости, местоположения, направления и т. д.
Этот поток данных будет предоставлять информацию о тысячах автомобилей, стоящих в любой пробке в любой день. Исследователи будут знать, насколько быстро движется каждый автомобиль. Они поймут, где началось движение, где оно закончилось и сколько времени длилось. Это удивительная детальная картина транспортного потока. Представьте себе последствия в сфере изучения пробок и планирования дорожной системы!