Добавить в цитаты Настройки чтения

Страница 1 из 39

ЛЬЮИС КЭРРОЛЛ: Досуги математические и не только

CURIOSA MATHEMATICA, ЧАСТЬ III

КНИГА II

Короткие способы выполнения некоторых арифметических процедур

Основная идея данного способа пришла мне в голову 19 сентября 1879 года. Я размышлял над большим неудобством, возникающим при обычной процедуре умножения в столбик из-за того, что две цифры, которые требуется перемножить, часто находятся друг от друга на большом расстоянии, и о том преимуществе, каким стала бы возможность записать задачу так, чтобы все такие цифры оказывались стоящими рядом. Тогда и появилась счастливая мысль, что если написать меньшее число задом наперёд и передвигать его поверх другого числа вдоль него, то на каждом этапе такого смещения мы получим наблюдаемый непосредственно набор из пар цифр, чьи произведения потребуется только сложить друг с другом, чтобы получить единственный столбец для действия над ним уже как обычно [1].

Способ, который я вывел из этой идеи, может быть изложен следующим образом.

Записать два данных числа так, чтобы меньшее, если они неравной длины, располагалось над большим, а их разряды единиц были совмещены по вертикали. Провести под нашими числами черту. На отдельной полоске бумаги записать верхнее число задом наперёд, пометив сверху его разряд единиц. Прикрыть этой полоской бумаги верхнее из наших чисел, совместив разряды единиц [чисел, оставшихся видимыми,] по вертикали. Обозрев эту пару цифр, записать цифру разряда единиц их произведения прямо под чертой и по вертикали с меткой, а цифру разряда десятков — ещё ниже и на одну позицию левее. Сместить полоску на одну позицию влево. Обозрев две пары цифр, которые выстроились по вертикали теперь, просуммировать их произведения, начиная с той пары, что стоит правее, и записать цифру разряда единиц результата прямо под чертой и по вертикали с меткой, а цифру разряда десятков ещё ниже и на одну позицию левее. Снова сместить полоску и действовать как ранее.

Конкретный пример прояснит дело. Пусть даны числа 574 и 3891. Запишем их, как здесь показано, проведём снизу черту и запишем число 574 на отдельной полоске бумаги, поставив метку поверх цифры 4.

Прикроем нашей полоской верхнее число, так чтобы метка оказалась прямо над разрядом единиц нижнего числа.

Обозрев располагающуюся вертикально пару цифр, говорим: «36» и вписываем цифру 6 под чертой и вертикально с меткой, а цифру 3 ещё ниже и на одну позицию левее.

Смещаем полоску бумаги на одну позицию влево.      

Обозрев две располагающиеся вертикально пары цифр, говорим: «63 и 4 будет 67». Вписываем 7 и 6.

Смещаем полоску бумаги на одну позицию влево.

Обозрев три располагающиеся вертикально пары цифр, говорим: «45 и 7 будет 52, да 32 будет 84». Вписываем 4 и 8.

Смещаем полоску как ранее.               

Обозрев три располагающиеся вертикально пары цифр, говорим: «5 и 56 будет 61, да 12 будет 73». Вписываем 3 и 7.

Смещаем полоску как ранее.

Обозрев две располагающиеся вертикально пары цифр, говорим: «40 и 21 будет 61». Вписываем 1 и 6.

Смещаем полоску как ранее.

Обозрев вертикальную пару цифр, говорим: «15». Вписываем 5 и 1.

Теперь удаляем полоску бумаги, проводим внизу черту и складываем вместе две полученные строки.

Читатель заметит, что действие при каждой позиции нашей полоски бумаги — вещь совершенно обособленная, осуществляемая сама по себе безотносительно к остальной части решения. Следовательно, при возникновении сомнения насчёт какой-либо отдельной цифры в ответе, те цифры, суммой которых она является, могут быть проверены сами по себе; например, если у нас есть подозрение, что цифра 9 неверна, мы можем проверить цифру 7, стоящую прямо над ней, помещая полоску бумаги в позицию восьмого этапа наших выкладок, а затем и цифру 1, стоящую над 7, поместив полоску в позицию десятого этапа.

Когда верхнее из двух данных чисел содержит не более четырёх или пяти цифр, действовать согласно вышеизложенному Правилу сравнительно легко, но при по-настоящему длинном верхнем числе окажется удобным проходить каждый ряд произведений дважды — первый раз суммируя их разряды единиц и занося разряд единиц результата в верхнюю строку решения, а затем суммируя их разряды десятков. Так, ход рассуждения для шестого этапа может быть следующим: «5 и 7 будет 12, да 2 будет 14». Заносим 4, 1 в уме. «5 и 3 будет 8». Вписываем 8 [2].

При действии по такому видоизменённому способу в голове рождается следующее Правило.

Собирая разряды единиц набора произведений пар цифр, помнить, что если один из членов пары равен 1, то разряд единиц равен другому [члену пары]; если один [из них] равен 5, то разряд единиц будет 5 либо 0 соответственно тому, чётным или нечётным будет другой; если один [из них] равен 9, разряд единиц равен 10 минус другой.

Собирая десятки, помнить, что если один из членов пары равен 1 или если сумма двух членов меньше 7, то разряд десятков отсутствует; если один [из членов пары] равен 5, то разряд десятков равен количеству двоек, содержащихся в другом; если один [из них] есть 9, то разряд десятков равен другому минус 1.

Во многих случаях такие задачи на умножение длинных чисел требуют суммирования только двух строк [под чертой]; когда же появляется набор произведений, чья сумма содержит три цифры, возникает нужда в третьей строке; когда сумма набора произведений содержит четыре цифры — то в четвёртой, но такое возникает только в том случае, когда меньшее из чисел содержит по меньшей мере тринадцать цифр; а когда сумма произведений содержит пять цифр — нужен пятый ряд, но такое происходит, лишь если меньшее число содержит по крайней мере сто двадцать четыре цифры, а потому превышает триллион секстиллионов!

Данный способ легко приложим и к перемножению десятичных дробей; нужно лишь для начала поместить полоску бумаги так, чтобы метка пришлась строго по вертикали над тем разрядом десятичных, на который требуется перенести действие. Я приведу здесь два примера, выделив из хода решения каждого, во-первых, сам пример в его исходной записи; во-вторых, стадию прямо перед тем, как полоска будет смещена первый раз; в-третьих, конечное состояние — перед тем как полоска будет убрана; и в-четвёртых, итог складывания.

1

Нижеследующий способ был первоначально описан Доджсоном в письме «Редактору „The Educational Times“». Опубликовано в т. XXXII (1 ноября 1879 г.), с. 307—308 названного издания.

«Сэр, если следующий краткий способ совершать умножение в столбик окажется нов, то я надеюсь, что вы сочтёте его заслуживающим опубликования.

Допустим, нам нужно умножить 56248 на 3726. Весь пример мы записываем в обычном виде, а именно:

Затем мы выписываем верхнюю строку задом наперёд с нижнего краю отдельной полоски бумаги, а над цифрой разряда единиц ставим метку как ориентир для глаза; этой полоской бумаги мы покрываем верхнюю строку нашего примера, совмещая по вертикали помеченную цифру с разрядом единиц нижней строки, — вот так:

Затем берём произведение тех цифр, что расположились по вертикали (в нашем случае это 8 и 6); оно равняется 48; мы записываем его разряд единиц (в нашем случае это 8) прямо под помеченной цифрой, а 4 «оставляем в уме» — вот так:

Затем мы сдвигаем нашу полоску на одну позицию влево:

Затем складываем цифру, оставшуюся в уме, с произведением тех цифр, которые расположились по вертикали, и записываем результат как ранее. Ход рассуждения тут таков: «4 плюс 24 будет 28, плюс 16 будет 44; 4 пишем, 4 в уме».

Затем вновь сдвигаем нашу полоску и действуем как ранее; ход рассуждения при этом таков: «4 плюс 12 будет 16, плюс 8 будет 24, плюс 56 будет 80; 0 пишем, 8 в уме».

Затем мы снова сдвигаем нашу полоску и так далее; когда достигнут последний шаг, наш пример принимает вот такой вид, с числом 5 в уме:

Следовательно, ход рассуждения на последнем шаге таков: «5 плюс 15 будет 20; записываем». Затем убираем нашу полоску, и перед нами следующий результат:

Такой же способ пригоден и при перемножении десятичных дробей; нам потребуется лишь не забывать совмещать цифру с меткой на нашей полоске бумаги по вертикали с тем десятичным разрядом, на который переносится следующее действие. Например, если нам нужно перемножить 0,63624 и 0,25873, и если, с целью иметь ответ с точностью до трёх знаков, мы пожелаем перенести действие на четвёртый разряд, то наш пример запишется так:

Тогда мы выписываем число 426360 на отдельной полоске бумаги и располагаем его так, чтобы помеченная цифра совпала по вертикали с четвёртым десятичным разрядом ответа — вот так:

Ход рассуждения на первом шаге будет таков: «0 плюс 48 будет 48, плюс 15 будет 63, плюс 12 будет 75; 5 пишем, 7 в уме».

Затем сдвигаем нашу полоску бумаги влево и действуем как ранее; на последнем шаге наш пример принимает следующий вид, с числом 1 в уме:

Следовательно, ход рассуждения на последнем шаге таков: «1 плюс 0 будет 1; записываем». Удаляем нашу полоску бумаги получаем результат:

Следовательно, ответ с точностью до третьего знака будет 0,164. Изложенный способ, как мне кажется, не только сэкономит место и время, но избавит от ошибок по невнимательности, связанных с выписыванием всех промежуточных рядов цифр, необходимых при старом способе, а также от постоянной опасности утерять нужное место, пока глаз носится наискось от одной цифры до другой, находящейся несколькими рядами ниже.

Ваш покорный слуга,

Чарльз Л. Доджсон,

член Колледжа и преподаватель математики

в Крайст Чёрч, Оксфорд».

2

На шестом этапе у нас появляется ряд из трёх произведений пар цифр, располагающихся вертикально: 5 × 9 = 45, 7 × 1 = 7 и 4 × 8 = 32. Складываем разряды единиц: 5 + 7 + 2 = 14, четыре пишем, один в уме; складываем десятки: 5 + 3 = 8.