Добавить в цитаты Настройки чтения

Страница 34 из 43

По определению фононы переносят энергию со скоростью звука (примерно 240 м/с в жидком гелии), т.е. практически мгновенно. Следовательно, сверхтекучий гелий является идеальным проводником тепла, и его температура уменьшается или увеличивается строго равномерно по всему объему. Здесь не образуются области, в которых локальный перегрев приводит к появлению пузырьков, наполненных паром, что необходимо для того, чтобы началось кипение. По этой причине при температуре ниже λ-точки кипение гелия вдруг прекращается.

Шарик, движущийся в такой жидкости, может терять энергию, только возбуждая фононы (так по крайней мере считал вначале Ландау, не зная еще о существовании вихрей). Испускание фононов подобно появлению звукового удара при движении реактивных самолетов; он появляется, только если объект (будь то самолет или шарик) преодолеет звуковой барьер и его скорость превысит скорость звука. Итак, медленный шарик не может терять энергию и замедляться дальше; вот почему в жидком гелии отсутствует вязкость и наблюдается сверхтекучее поведение. Аналогичное рассуждение справедливо и для движения по исключительно тонким капиллярам.

Вихри и вязкость

В сверхтекучем гелии, однако, критерий Ландау нарушается; как только жидкость начинает двигаться со скоростью, равной не метрам, а всего лишь нескольким сантиметрам в секунду, снова начинают происходить диссипативные процессы, вовлекающие в игру вязкость. Эти процессы обязаны своим появлением новому типу возбуждения, вихрям, которые могут перемещаться с низкими скоростями и которые отрываются от движущихся шариков гораздо раньше, чем те испустят фононы. в сверхтекучей жидкости вихри очень тонкие (шириной 1 Е) и практически невидимы; избавиться от них чрезвычайно трудно. Если заставить вращаться ведерко, наполненное сверхтекучей жидкостью, то от его стенки немедленно отделится множество вихрей, направленных вдоль оси вращения и вместе напоминающих макро вихрь в обычной жидкости.

Если бы вихри не появлялись, то было бы невозможно заставить крутиться сверхтекучую жидкость вместе с сосудом; при вращении сосуда жидкость скользила бы без трения, отказываясь следовать за стенками сосуда. Таким образом, появление вихрей приводит к тому, что поведение сверхтекучей жидкости становится похожим на поведение нормальной. При дальнейшем нагревании сверхтекучей жидкости центры возбуждения в конце концов заполняют весь сосуд и жидкость перестает быть сверхтекучей; это происходит как раз в λ-точке. Если пропустить сверхтекучую жидкость через трубку, наполненную очень тонким спрессованным порошком, то, поскольку через такой фильтр вихри и фононы не пройдут, просочившаяся жидкость окажется более холодной, чем оставшаяся. Нагревая жидкость в какой-нибудь точке, мы вызовем появление фононов.

Эффект фонтанирования

При описании всех упомянутых явлений рассматривают жидкий гелий как смесь двух жидкостей: сверхтекучей, проходящей через тонкие отверстия, и нормальной, которая через такие отверстия пройти не может. Под нормальной жидкостью понимается та часть, в которой встречаются фононы и прочие возбуждения. Говорят, что при нагревании сверхтекучая жидкость переходит в жидкость нормальную и что этот процесс завершается в λ-точке.

Такой подход приводит к любопытным объяснениям различных странных эффектов, проявляющихся в жидком гелии, например фонтанировании. Погрузим вертикально в жидкость трубку, закрытую снизу упоминавшимся уже фильтром из тонкого спрессованного порошка и открытую сверху. Гелий частично войдет в трубку. Будем медленно нагревать внутренность трубки. При этом сверхтекучая жидкость превращается в нормальную, давление которой соответственно повышается. Однако, поскольку нормальная, вязкая, жидкость выйти через фильтр не может, она поднимет общий уровень жидкости в трубке, и тогда, согласно закону сообщающихся сосудов, в трубку через пробку снова потечет сверхтекучая жидкость. Таким образом, наблюдается непрерывный приток жидкости в трубку, и в конце концов она выбрасывается вверх в виде фонтана, отчего и произошло само название эффекта.

До сих пор мы считали, что имеем дело с гелием, состоящим из бозонов, т.е. с He4. Существует, однако, изотоп гелия, He3, ядро которого содержит только один нейтрон и поэтому является фермионом. Следовательно, и атом He3 тоже представляет собой фермион, что вносит глубокие изменения в свойства жидкости при низкой температуре. Жидкий He3 не затвердевает по той же причине, что и He4. При температурах в тысячные доли градуса Кельвина два атома He3 объединяются, образуя так называемую «пару Купера», которая в некотором смысле играет ту же роль, что и атом He4; действительно, мы снова имеем бозон, и снова наблюдаются сложные явления сверхтекучести, на которых мы не можем более задерживаться. Физики считают, что в ядерном веществе нуклоны аналогичным образом собираются в куперовские пары, что также приводит к явлениям сверхтекучести.

Открытие сверхпроводимости

В начале века «столицей холода» был Лейден, приятный голландский городок, имеющий давнюю традицию научных исследований.



В криогенной лаборатории Лейдена, ставшей впоследствии знаменитой, пионер техники охлаждения Камерлинг-Оннес сумел в 1908 г. впервые получить жидкий гелий. в последующие годы он же продолжал исследовать влияние глубокого холода на различные материалы.

При очень низких температурах принято отсчитывать градусы Цельсия от абсолютного нуля (–273,13°С). Напомним, что при абсолютном нуле (наименьшая из возможных температур) вещество имеет минимальную энергию и тепловое движение прекращается.

Охлаждение медной проволоки приводит к уменьшению ее сопротивления, следовательно, медь, как, впрочем, и любой другой металл, может быть использована в качестве термометра, если известно, как именно меняется ее сопротивление с температурой.

В 1911 г. Камерлинг-Оннес как раз делал попытку использовать для таких целей проволоку из свинца, когда очередное охлаждение привело к полному исчезновению ее электрического сопротивления. Так была открыта сверхпроводимость, которая наблюдается во многих металлах и сплавах (но, как это ни парадоксально, не в меди и серебре, являющимися наилучшими проводниками при обычных температурах). Однако только в 1957 г. Бардин, Купер и Шрифер сумели дать удовлетворительное объяснение явлению сверхпроводимости, построив теорию, носящую их имя (теория БКШ).

Механизм проводимости

Прежде чем углубляться в теорию БКШ, следует разобраться в механизме обычной проводимости. Вспомним, что вещество состоит из атомов, содержащих тяжелое положительно заряженное центральное ядро, притягивающее отрицательно заряженные электроны.

Связанные ядро и электроны образуют единое нейтральное целое. Те электроны, которые последними пристраиваются к ядру, находят его в большой степени нейтрализованным теми, что прибыли раньше. Следовательно, внешние электроны слабее связаны с ядром, и поэтому два атома, оказавшись поблизости друг от друга, могут с легкостью обменяться ими; так возникают межатомные силы и химические валентности.

Межатомные силы в металле заставляют атомы выстраиваться в упорядоченные и компактные ряды, формируя решетку (называемую кристаллической). Такие решетки часто обладают поразительной симметрией.

В металле периферические электроны легко мигрируют от одного атома к другому. Эти электроны на самом деле не принадлежат больше определенному атому и образуют море отрицательных зарядов, способных свободно передвигаться через металл. Атомы образуют положительный фон, обеспечивающий нейтральность металла как целого.

Если приложить разность потенциалов к свинцовой проволоке, например присоединив ее к батарейке, то электроны (отрицательные) начнут двигаться в сторону положительного конца, к которому они будут притягиваться. Батарейка будет гнать их от отрицательного конца цепи к положительному, пока не истощится. в этом случае говорят, что батарейка создает ток в цепи. Таким образом, батарейка представляет собой «насос», качающий электроны вдоль проволоки – «трубы».