Добавить в цитаты Настройки чтения

Страница 7 из 9



СТЬЮДРАСПОБР (α = 0,05; df = n — k — 1);

где в опции α — величина риска, при котором коэффициент регрессии (или свободный член) может оказаться за рамками установленных доверительных интервалов;

в опции df — число степеней свободы.

Таким образом, для 95 %-ного уровня надежности t-критерий = СТЬЮДРАСПОБР (α = 0,05; df= 215 — 1–1) = 1,9712.

Далее для свободного члена уравнения находим:

1. Значение столбца НИЖНИЕ 95 % = КОЭФФИЦИЕНТ — СТАНДАРТНАЯ ОШИБКА × t-критерий = 1,995805 — (0,873601 × 1,9712) = 0,273794.

2. Значение столбца ВЕРХНИЕ 95 % = КОЭФФИЦИЕНТ + СТАНДАРТНАЯ ОШИБКА × t-критерий = 1,995805 + (0,873601 × 1,9712) = = 3,717815.

Для коэффициента регрессии TIME находим:

1. Значение столбца НИЖНИЕ 95 % = КОЭФФИЦИЕНТ — СТАНДАРТНАЯ ОШИБКА × t-критерий = 0,162166 — (0,007013 × 1,9712) = 0,148342.

2. Значение столбца ВЕРХНИЕ 95 % = КОЭФФИЦИЕНТ + СТАНДАРТНАЯ ОШИБКА × t-критерий = 0,162166 + (0,007013 × 1,9712) = 0,175991.

6. Столбцы НИЖНИЕ 99 % и ВЕРХНИЕ 99 % показывают соответственно нижние и верхние интервалы значений коэффициентов при 99 %-ном уровне значимости. При этом значения столбца НИЖНИЕ 99 % и ВЕРХНИЕ 99 % находятся аналогичным образом, как и значения столбцов НИЖНИЕ 95 % и ВЕРХНИЕ 95 %.

Единственное отличие — это расчет t-критерия для 99 %-ного уровня надежности. При этом t-критерий = СТЬЮДРАСПОБР (α = 0,01; df= 215 — 1–1) = 3,3368. Найденный t-критерий используют при нахождении 99 % доверительных интервалов для свободного члена и коэффициента регрессии. Правда, со свободным членом уравнения у нас возникает довольно серьезная проблема. Дело в том, что при 99 %-ном уровне надежности у свободного члена уравнения при переходе от столбца НИЖНИЕ 99 % к столбцу ВЕРХНИЕ 99 % происходит смена знака от минуса к плюсу. Вполне очевидно, что в практических расчетах столь неоднозначно изменяющийся свободный член уравнения (он может быть как положительным, так и отрицательным, а также равным нулю) невозможно использовать. Поэтому для 99 %-ного уровня надежности свободный член уравнения считается статистически незначимым, в то время как для 95 %-ного уровня надежности его можно считать статистически значимым, поскольку в последнем случае при переходе от столбца НИЖНИЕ 95 % к столбцу ВЕРХНИЕ 95 % не происходит смена знака от минуса к плюсу.

Суммируя сказанное, приведем краткий алгоритм принятия решения о статистической значимости уравнения регрессии на основе ВЫВОДА ИТОГОВ в Excel.

1.1. Чем ближе R-квадрат к единице, тем лучше. Это дает важный критерий для выбора одного из нескольких уравнений регрессии.

1.2. Значимость F при 95 %-ном уровне надежности должна быть меньше 0,05; при 99 %-ном должна быть меньше 0,01.

2.1. P-значение должно быть меньше 0,05 при 95 %-ном уровне надежности; при 99 %-ном P-значение должно быть меньше 0,01.

2.2. Коэффициенты регрессии и свободный член уравнения при переходе от столбцов НИЖНИЕ и ВЕРХНИЕ (при заданном уровне надежности) не должны менять свой знак. Если смена знака происходит, то коэффициенты регрессии и свободный член уравнения признаются статистически незначимыми.



Исходя из этого краткого алгоритма мы отметили жирным шрифтом в ВЫВОДЕ ИТОГОВ (табл. 2.5) именно те пункты, на которые следует обратить внимание. При этом те пункты, которые не являются статистически значимыми при определенном уровне надежности, мы не только выделили жирным шрифтом, но еще и подчеркнули.

Таким образом, взяв за основу данные из табл. 2.5 и действуя по алгоритму № 4, мы дадим ответы на все его четыре пункта.

1.1. Поскольку коэффициент детерминации R2 для этого уравнения регрессии оказался равен 0,71511, то отсюда можно сделать вывод, что это уравнение в 71,51 % случаях в состоянии объяснить ежемесячные колебания курса доллара.

1.2. Значимость F равна 5,4Е -60 или нулю, а следовательно, уравнение регрессии статистически значимо как при 95 %-ном уровне надежности, так и при 99 %-ном уровне надежности.

2.1. Р-значение для свободного члена уравнения равно 0,023323, а следовательно, этот коэффициент статистически значим лишь при 95 %-ном уровне надежности, но незначим при 99 %-ном уровне надежности, поскольку он больше 0,01. Р-значение для коэффициента регрессии равно нулю, а следовательно, этот коэффициент статистически значим как при 95 %-ном уровне надежности, так и при 99 %-ном уровне надежности.

2.2. Свободный член (константа) уравнения при переходе от столбца НИЖНИЕ 99,0 % к столбцу ВЕРХНИЕ 99,0 % меняет знак с минуса на плюс, а потому статистически незначим при 99 %-ном уровне надежности. При 95 %-ном уровне надежности смены знаков не происходит, а потому свободный член уравнения при этом уровне надежности статистически значим. Коэффициент регрессии статистически значим как при 95 %, так и при 99 %-ном уровне надежности, поскольку и в том, и в другом случае смены знака у этого коэффициента не происходит. Следовательно, на основании табл. 2.5 можно сделать вывод, что в целом уравнение регрессии и все его коэффициенты статистически значимы при 95 %-ном уровне надежности.

Как мы уже говорили ранее, уравнение регрессии в отличие от обычных уравнений, оценивающих функциональную, т. е. жестко детерминированную связь между переменными, дает прогноз зависимой переменной с учетом воздействия случайного фактора, поэтому фактические значения результативного признака практически всегда отличаются от его расчетных (теоретических) значений. При этом случайная компонента (остаток) находится следующим образом.

Сначала находится прогнозируемый курс доллара, например, на апрель 2010 г. С учетом того, что порядковый номер апреля 2010 г. равен 215 (июнь 1992 г. = 1), на этот месяц может быть предсказан следующий курс доллара:

Yрасч = 0,1622 × 215 + 1,9958 = 36,8616;

Е= Yфакт- Yрасч = -7,573.

Следовательно, прогноз, сделанный по уравнению регрессии, в апреле 2010 г. оказался выше фактического курса доллара на 7 руб. 57,3 коп. Вполне очевидно, что это слишком большая величина отклонения, чтобы исследуемое уравнение регрессии можно было бы использовать для прогноза валютного курса. В свою очередь чем ближе теоретические значения подходят к фактическим данным, тем лучше качество прогностической модели. Поскольку разница между фактическим и предсказываемым значениями курса доллара (Yфакт- Yрасч) может быть величиной как положительной, так и отрицательной, то ошибку аппроксимации (подгонки модели к фактическим данным) следует определять как в абсолютных цифрах по модулю, так и в процентах по модулю.

При этом среднюю абсолютную ошибку по модулю находят по следующей формуле:

Для нашего уравнения регрессии средняя абсолютная ошибка по формуле (2.20) будет равна

Иначе говоря, прогноз по этой статистической модели в среднем по каждому наблюдению отклонялся от фактического значения курса доллара на 5 руб. 62,3 коп. по модулю.

Среднюю относительную ошибку по модулю в процентах вычисляют по следующей формуле:

При этом средняя относительная ошибка по модулю в процентах имеет следующее значение: