Страница 31 из 40
z = ½ x + y,
при решении которой x = 2y = z. Поскольку сумма значений x, y и z должна равняться 1, отсюда следует, что x = 2/5, y = 1/5 и z = 2/5, что соответствует ранее найденным значениям.
Давайте на мгновение вернемся назад и посмотрим, как все это вписывается в широкий контекст линейной алгебры. Приведенное выше уравнение стационарного состояния, так же как и уравнения обновления, содержащие штрихи, — типичные примеры линейных уравнений. Они называются линейными, поскольку описывают прямые линии: переменные x, y, z в этих уравнениях в первой степени, так же как и в знакомом нам из курса алгебры средней школы уравнении прямой y = mx + b.
Линейные уравнения, в противоположность уравнениям, содержащим нелинейные члены, например x2 или yz, либо sin x, решаются относительно просто. Сложности начинаются там, где в уравнениях присутствует огромное количество переменных, как это происходит в реальной сети. Поэтому одной из центральных задач линейной алгебры является разработка более быстрых алгоритмов для решения больших систем уравнений. Даже незначительные усовершенствования этих алгоритмов ощущаются практически во всех сферах жизни — от расписания авиарейсов до сжатия изображения.
Однако самой существенной победой линейной алгебры, с точки зрения ее роли в повседневной жизни, безусловно, стало решение парадокса дзен-буддизма для ранжирования страниц. «Страница хороша в той мере, в какой хорошие страницы ссылаются на нее». Переведенный в математические символы, этот критерий становится алгоритмом PageRank.
Поисковик Google стал тем, чем он есть сегодня, после решения уравнения, которое и мы с вами только что решили, но с миллиардами переменных — и, соответственно, с миллиардными прибылями.
Часть VI. Границы возможного
25. Самые одинокие числа
Как поется в знаменитой песне 1960-х годов, один — самое одинокое число[141], хотя, вдвоем порой бывает еще хуже, чем одному. Возможно, так и есть, но и с простыми числами тоже все непросто.
Паоло Джордано объясняет почему в своем бестселлере The Solitude of Prime Numbers («Одиночество простых чисел»)[142]. Это меланхолическая история любви двух затерянных в жизни людей, двух простых чисел, Маттиа и Аличе. В детстве им пришлось пережить трагедию, вследствие которой они практически перестали общаться с окружающими, но нашли друг в друге родственные души. Джордано пишет.
Простые числа делятся только на единицу и самих себя. Они занимают свое место в бесконечном ряду простых чисел, которые, как и остальные числа, зажаты между двумя другими, но на один шаг дальше, чем предыдущие. Эти числа подозрительны и одиноки, и Маттиа казалось, что они волшебные. Иногда он думал, что они очутились в этом ряду по ошибке, как жемчужины, нанизанные на нитку ожерелья. А порой ловил себя на мысли, что они тоже предпочли бы быть обычными числами, однако по какой-то причине не сложилось. […]
Учась на первом курсе университета, Маттиа узнал, что среди простых чисел есть еще более причудливые экземпляры. Математики называют их простыми числами-близнецами: это пара близлежащих друг к другу чисел, находящихся почти рядом, но между ними всегда стоит четное число, которое не дает им по-настоящему воссоединиться. Это, например, числа 11 и 13, 17 и 19, 41 и 43. Если набраться терпения и продолжить считать дальше, то вы увидите, что постепенно такие пары встречаются все реже. Вы сталкиваетесь с простыми числами, которые становятся все более одинокими, потерянными в этом молчаливом, измеренном пространстве, состоящем только из цифр, и у вас возникает тяжелое предчувствие того, что предыдущие пары чисел были случайными, и их истинное предназначение — одиночество. Потом, когда вы уже готовы сдаться и вам больше не хочется считать, вы встречаете еще одну пару близнецов, крепко держащихся друг за друга. Среди математиков существует убеждение, что, как бы далеко ты ни зашел, всегда можно найти еще пару чисел, даже если никто точно не знает, где они будут обнаружены.
Маттиа думал, что они с Аличе похожи на эти простые числа-близнецы, одинокие и потерянные, близкие, но не до такой степени, чтобы прикоснуться друг к другу.
Здесь я хотел бы остановиться на нескольких красивых идеях из приведенного отрывка, в частности на моменте, касающемся одиночества простых чисел и простых чисел-близнецов. Эти проблемы — центральные в теории чисел[143], самой чистой области математики, изучающей целые числа и их свойства.
Однако прежде чем подняться в облака, давайте разберемся с вопросом, который часто возникает у прагматиков. Есть ли какая-либо польза от теории чисел? Есть. Теория чисел представляет собой основу алгоритмов[144], ежедневно используемых, чтобы обеспечить безопасность проведения транзакций в интернете, а также для шифрования секретных переговоров, имеющих стратегическое значение. Эти алгоритмы построены на сложности разложения очень больших чисел на простые множители.
Но это не единственная причина, по которой математики так одержимы простыми числами. Истинная причина кроется в их фундаментальности. Простые числа — атомы арифметики. Согласно греческому происхождению слова «атом», простые числа являются «атомными», то есть «неделимыми». И подобно тому как все сложено из атомов, каждое число слагается из простых чисел. Например, 60 равно 2 × 2 × 3 × 5. Мы говорим, что 60 — это составное число, и его можно представить в виде произведения простых множителей 2 (дважды), 3 и 5.
А как быть с 1? Это простое число? Нет. И когда мы поймем это, то узнаем, почему 1 — самое одинокое число, даже более одинокое, чем любое простое число.
Оно не заслуживает того, чтобы принимать его во внимание. Учитывая то, что число 1 делится только на 1 и на само себя, его действительно можно считать простым числом, как это и было на протяжении многих лет. Однако современные математики решили удалить его из простых чисел исключительно ради удобства. Если бы число 1 принималось во внимание, оно нарушило бы ход доказательства теоремы, а ее хотелось бы считать верной. Другими словами, мы изменили определение простых чисел, чтобы получить желаемую теорему, согласно которой любое число можно разложить на множители из простых чисел единственным способом. Однако если рассматривать число 1 как простое, разложение на множители не будет единственным. Например, 6 равно 2 × 3, но оно также равно 1 × 2 × 3, 1 × 1 × 2 × 3 и так далее, и нам пришлось бы согласиться, что все эти варианты правомочны. Конечно, это глупо, но мы были бы обречены на такие муки, если бы включили число 1 в состав простых чисел.
Эта маленькая грязная история весьма поучительна и приоткрывает завесу тайны над тем, как иногда делается математика. Наивно полагать, что мы создаем нерушимые определения, а затем выводим из них любые теоремы. Все не так просто. В данном случае при желании мы можем изменить формулировку, тем более что незначительная коррекция позволяет получить более чистую теорему.
Теперь, когда мы отбросили число 1, давайте посмотрим на другие, полноценные простые числа. Главное, что мы о них знаем, — они непостижимы и непроницаемы. Еще никто никогда не находил для них точной формулы. В отличие от настоящих атомов, они не следуют никакой простой модели и совсем не похожи на периодическую таблицу элементов.
Предупреждающие знаки сразу же можно увидеть уже в первых десяти простых числах: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. Первое, что бросается в глаза, — их ряд начинается с нехорошего числа 2. Это число-чудак — самый большой неудачник. Оно единственное из простых чисел имеет несчастье быть четным. Неудивительно, что «это самое одинокое число после числа один» (как поется в песне).
141
Гарри Нилссон написал песню One, получившую известность под названием Three Dog Night. Она стала хитом, заняв пятое место в горячей сотне хитов Billboard Hot 100, а Эйми Манн создала ее великолепную версию для фильма «Магнолия».
142
См. P. Giordano, The Solitude of Prime Numbers (Pamela Dorman Books/Viking Penguin, 2010).
143
Сложно сказать, с чего начать, чтобы поближе познакомиться с теорией чисел, и особенно с загадками простых чисел. Вы можете выбрать одну из следующих трех замечательных книг. Все они выпущены примерно в одно и то же время и все обращаются к гипотезе Римана, которая рассматривается как самая большая нерешенная задача в математике. Чтобы глубже познакомиться с математическими подробностями и историей гипотезы Римана, я рекомендую книгу J. Derbyshire, Prime Obsession (Joseph Henry Press, 2003). В книгах D. Rockmore, Stalking the Riema
Прим. ред.: По теории чисел существует такая обширная литература, что трудно остановиться на чем-то одном. Вот несколько «классических» введений в эту теорию: Боревич З. И., Шафаревич И. Р… Теория чисел. М.: Наука, 1972; Виноградов И. М. Основы теории чисел. М.-Л.: Гостехиздат, 1952; Хинчин А. Я. Три жемчужины теории чисел. М.: Наука, 1979. Литература по простым числам: Гальперин Г. «Просто о простых числах» // Квант. 1987. № 4; Генри С. Уоррен. Формулы для простых чисел // Алгоритмические трюки для программистов. М.: «Вильямс», 2007; Матиясевич Ю. Формулы для простых чисел // Квант. 1975. № 5; Карпушина Н. Палиндромы и «перевертыши» среди простых чисел // Наука и жизнь. 2010. № 5. О гипотезе Римана и ее связи с простыми числами см. интересную статью Николенко С. Проблемы 2000 года: гипотеза Римана // Компьютерра. 2005. Рекомендуем также интересный и познавательный сайт «Числонавтика», посвященный теории чисел (и не только) по адресу http://www.numbernautics.ru/.
Дж. Дербишир. Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. М.: Астрель, 2010.
144
Использование теории чисел в криптографии описано в работе M. Gardner, Penrose Tiles to Trapdoor Ciphers (Mathematical Association of America, 1997), главы 13 и 14. В первой из этих глав приводится знаменитая статья Гарднера, опубликованная в августе 1977 года в журнале Scientific American, где он рассказывает о создании криптографической системы RSA, взломать которую практически невозможно. В главе 2 описывается «ужас», который вызвало это открытие в Национальном агентстве безопасности. О последних исследованиях в этой области говорится в главе 10 книги du Sautoy, The Music of the Primes.
Прим. ред.: Литература по криптографии: Нестеренко Ю. В. Алгоритмические проблемы теории чисел // Введение в криптографию / Под редакцией В. В. Ященко. СПб: Питер, 2014. Василенко О. Н. Теоретико-числовые алгоритмы в криптографии. М.: МЦНМО, 2003; Черемушкин А. В. Лекции по арифметическим алгоритмам в криптографии. М.: МЦНМО, 2002; Крэндалл Р., Померанс К. Простые числа. Криптографические и вычислительные аспекты. М.: УРСС, Либроком, 2011.