Страница 30 из 40
Алгоритмы на основе анализа ссылок решили проблему, проникнув в суть парадокса, подобного коанам дзен: в результате поиска в интернете должны были отображаться лучшие страницы. А что же, кузнечик[132], делает страницу лучшей? Когда на нее ссылаются другие не менее хорошие страницы.
Звучит подобно рассуждениям про замкнутый круг.[133] Так и есть. Именно поэтому все настолько сложно. Ухватившись за эту идею и превратив ее в преимущество, алгоритм анализа ссылок дает решение поиска в сети в стиле джиу-джитсу.
Этот подход построен на идеях, взятых из линейной алгебры[134], изучения векторов и матриц. Если вы хотите выявить закономерности в огромном скоплении данных или выполнить гигантские вычисления с миллионами переменных, линейная алгебра предоставит для этого все необходимые инструменты[135]. С ее помощью был построен фундамент для алгоритма PageRank[136], положенного в основу Google. Она также помогает ученым классифицировать человеческие лица[137], провести анализ голосования в Верховном суде[138], а также выиграть приз Netflix[139] (вручаемый команде, сумевшей улучшить более чем на 10 % систему Netflix, на основе которой составляются рекомендации для просмотра лучших фильмов).
Чтобы изучить линейную алгебру в действии, рассмотрим, как работает алгоритм PageRank. А чтобы выявить его сущность без лишней суеты, представим игрушечную паутину, состоящую всего из трех страниц, связанных между собой следующим образом:
Стрелки указывают, что страница X содержит ссылку на страницу Y, однако Y не отвечает ей взаимностью. Наоборот, Y ссылается на Z. Тем временем X и Z ссылаются друг на друга, сцепившись между собой цифровыми лапками.
Какие страницы самые важные в этой маленькой паутине? Вы можете подумать, что это невозможно определить из-за недостатка информации об их содержимом. Но такой способ мышления устарел. Беспокойство по поводу контента вылилось в неудобный способ ранжирования страниц. Компьютеры мало понимают в смысловом наполнении, а люди не справляются с тысячами новых страниц, которые каждый день появляются в сети.
Подход, придуманный Ларри Пейджем и Сергеем Брином, аспирантами университета и основателями Google, состоял в том, чтобы позволить страницам самим ранжироваться в определенном порядке, голосуя ссылками. В приведенном выше примере страницы X и Y ссылаются на Z, благодаря чему Z становится единственной страницей с двумя входящими ссылками. Следовательно, она и будет самой популярной страницей в данной среде. Однако если ссылки поступают со страниц сомнительного качества, они станут работать против себя. Популярность сама по себе ничего не значит. Главное — иметь ссылки с хороших страниц.
И здесь мы снова оказывается в замкнутом круге. Страница считается хорошей, если на нее ссылаются хорошие страницы, но кто изначально решает, какие из них хорошие?
Это решает сеть. Вот как все происходит. (Далее я буду пропускать некоторые подробности, изложенные в примечании[140].)
Алгоритм Google назначает для каждой страницы дробное число от 0 до 1. Это численное значение называется PageRank и измеряет «важность» страницы по отношению к другим, высчитывая относительное количество времени, которое гипотетический пользователь потратит на ее посещение. Хотя пользователь может выбирать более чем из одной исходящей ссылки, он выбирает ее случайно с равной вероятностью. При таком подходе страницы считаются более авторитетными, если они чаще посещаются.
А поскольку индексы PageRank определяются как пропорции, их сумма по всей сети должна составлять 1. Этот закон сохранения предполагает другой, возможно, более осязаемый способ визуализации PageRank. Представьте его как жидкое вещество, текущее по сети, количество которого уменьшается на плохих страницах и увеличивается на хороших. С помощью алгоритма мы пытаемся определить, как эта жидкость распределяется по интернету на протяжении длительного времени.
Ответ получим в результате многократно повторяющегося следующего процесса. Алгоритм начинается с некоего предположения, затем обновляет все значения PageRank, распределяя жидкость в равных частях по исходящим ссылкам, после этого она проходит несколько кругов, пока не установится определенное состояние, при котором страницы получат причитающуюся им долю.
Изначально алгоритм задает равные доли, что позволяет каждой странице получить одинаковое количество PageRank. В нашем примере три страницы, и каждая из них начинает движение по алгоритму со счетом 1/3.
Начальные значения PageRank
Затем счет обновляется, отображая реальное значение каждой страницы. Правило состоит в том, что каждая страница берет свой PageRank с последнего круга и равномерно распределяет его по всем страницам, на которые ссылается. Следовательно, обновленное значение страницы X после прохождения первого круга по-прежнему равно 1/3, поскольку именно столько PageRank она получает от Z, единственной страницы, которая на нее ссылается. При этом счет страницы Y уменьшается до 1/6, так как она получает только половину PageRank от X после предыдущего круга. Вторая половина переходит к странице Z, что делает ее победителем на данном этапе, поскольку она добавляет себе еще 1/6 от страницы X, а также 1/3 от Y, и всего получается 1/2. Таким образом, после первого круга мы имеем следующие значения PageRank:
Значения PageRank после одного обновления
В последующих кругах правило обновления остается прежним. Если обозначить через x, y, z текущий счет страниц X, Y и Z, то в результате обновления получим такой счет:
х' = z
y' = ½ x
z' = ½ x + y,
где штрихи говорят о том, что произошло обновление. Подобные многократно повторяющиеся вычисления удобно выполнять в электронной таблице (или вручную, если сеть маленькая, как в нашем случае).
После десяти повторений обнаружим, что от обновления к обновлению цифры практически не меняются. К этому моменту доля X составит 40,6 % от всего PageRank, доля Y — 19,8 %, а Z — 39,6 %. Эти значения подозрительно близки к числам 40, 20 и 40 %, что говорит о том, что алгоритм должен к ним сходиться.
Так и есть. Эти предельные значения алгоритм Google и определяет для сети как PageRank.
Предельные значения PageRank
Вывод для данной маленькой сети такой: страницы X и Z одинаково важны, несмотря на то что у Z в два раза больше входящих ссылок. Это и понятно: страница X равна Z по значимости, поскольку она получает от нее полное одобрение, однако взамен дает ей лишь половину своего одобрения. Вторая половина отправляется Y. Это также объясняет, почему Y достается только половина от долей X и Z.
Интересно, что эти значения можно получить, не прибегая к многократным итерациям. Надо просто подумать над условиями, определяющими стационарное состояние. Если после очередного обновления ничего не меняется, то x' = x, y' = y и z' = z. Поэтому, заменив переменные со штрихом в уравнениях обновлений на их эквиваленты без штрихов, получим систему уравнений
х = z
y = ½ x
132
Если вас смутило использованное мной слово «кузнечик», поясню, что этим ласковым именем называют ученика, которому еще предстоит многому научиться у мастера дзен. В телесериале «Кунг-фу» слепой монах По учит мудрости своего ученика Кэйна и на первом уроке называет его кузнечиком.
Мастер По. Закрой глаза. Что ты слышишь?
Юный Кэйн. Я слышу воду. Я слышу пение птиц.
По. Слышишь ли ты, как бьется твое сердце?
Кэйн. Нет.
Мастер По. Слышишь ли ты кузнечика, что стрекочет у твоих ног?
Кэйн. Старик, как тебе удается слышать все это?
По. Юноша, как ты умудряешься этого не слышать?
133
Признание существования проблемы замкнутого круга для ранжирования веб-страниц, а также ее решение с помощью линейной алгебры вылилось в два направления исследований, опубликованных в 1998 году. Одно было проведено моим коллегой по Корнуолльскому университету Джоном Клейнбергом, который впоследствии стал экспертом исследовательского центра IBM Almaden Research Center. Его исследование посвящено алгоритму HITS (альтернативной форме анализа ссылок, появившейся немного раньше, чем алгоритм PageRank от Google), см. J. Kleinberg, Authoritative sources in a hyperlinked environment, Proceedings of the Ninth A
Вторая линия исследований проводилась основателями Google Ларри Пейджем и Сергеем Брином. В основе их алгоритма PageRank лежало количество времени, которое случайный пользователь сети будет проводить на каждой странице. Этот процесс описывается по-иному, но приводит все к той же проблеме замкнутого круга. Обоснования метода PageRank даны в статье S. Brin and L. Page, The anatomy of a large-scale hypertextual Web search engine, Proceedings of the Seventh International World Wide Web Conference (1998), рр. 107–117.
Как это часто случается в науке, поразительно похожие предвестники этих идей уже были открыты в других ее областях. С предысторией появления PageRank в библиометрике, психологии и социологии можно ознакомиться в статье М. Franceschet, PageRank: Standing on the shoulders of giants, Communications of the ACM, Vol. 54, № 6 (2011), доступной на http://arxiv.org/abs/1002.2858, а также S. Vigna, Spectral ranking, на http://arxiv.org/abs/0912.0238.
134
Введение в линейную алгебру и способы ее применения в различных областях науки прекрасно изложены в книге G. Strang, Introduction to Linear Algebra, 4th edition (Wellesley-Cambridge Press, 2009).
135
Некоторые наиболее впечатляющие области применения линейной алгебры описаны в работе D. James, М. Lachance, and J. Remski, Singular vectors’ subtle secrets, College Mathematics Journal, Vol. 42, № 2 (March 2011), рр. 86–95.
136
Согласно Google, термин PageRank происходит от имени Ларри Пейджа, а не от английского слова webpage (веб-страница). См. http://web.archive.org/web/20090424093934/http://www.google.com/press/funfacts.html.
137
Эта идея основана на том, что лицо человека представляет собой комбинацию небольшого числа его основных компонентов. Впервые линейная алгебра была применена для распознавания лиц в работе L. Sirovich and М. Kirby, Low-dimensional procedure for the characterization of human faces, Journal of the Optical Society of America A, Vol. 4 (1987), рр. 519–524 и получила дальнейшую разработку в исследовании М. Turk and A. Pentland, Eigenfaces for recognition, Journal of Cognitive Neuroscience, Vol. 3 (1991), рр. 71–86, доступном на http://cse.seu.edu.cn/people/xgeng/files/under/turk91eigenfaceForRecognition.pdf.
Полный список работ, посвященных этой проблеме, см. на главной странице сайта Face Recognition (http://www.face-rec.org/interesting-papers/).
138
См. L. Sirovich, A pattern analysis of the second Rehnquist U.S. Supreme Court, Proceedings of the National Academy of Sciences, Vol. 100, № 13 (2003), рр. 7432–7437. Этому исследованию посвящена статья N. Wade, A mathematician crunches the Supreme Court’s numbers, New York Times (June 24, 2003). Следующая работа предназначена для специалистов в области права и написана математиком и профессором права: P. H. Edelman, The dimension of the Supreme Court, Constitutional Commentary, Vol. 20, № 3 (2003), рр. 557–570.
139
Историю приза компании Netflix, а также интересные подробности о первых претендентах на него читайте в статье C. Thompson, If you liked this, you’re sure to love that — Wi
140
Для простоты я представлю только базовую версию алгоритма PageRank. Для обработки сетей с некоторыми другими структурными свойствами его необходимо изменить. Предположим, в сети есть страницы, которые ссылаются на другие, но те, в свою очередь, на них не ссылаются. В процессе обновления эти страницы потеряют свой PageRank. Они отдают его другим, и он больше не восполняется. Таким образом, в конце концов они получат значения PageRank, равные нулю, и с этой точки зрения становятся неразличимыми.
С другой стороны, существуют сети, где некоторые страницы или группы страниц открыты для накапливания PageRank, но при этом не делают ссылок на другие страницы. Подобные страницы действуют как накопители PageRank.
Чтобы избежать подобных результатов, Брин и Пейдж изменили свой алгоритм следующим образом. После каждого этапа в процессе обновления данных все текущие значения PageRank уменьшаются на постоянный коэффициент, так что их сумма будет меньше 1. Затем остатки PageRank равномерно распределяются между всеми узлами в сети, как будто «сыплются с неба». Таким образом, алгоритм завершается действием уравнивания, распределяющим значения PageRank между самыми «бедными» узлами.
Более тщательно математика PageRank и интерактивные исследования рассматриваются в работе E. Aghapour, T. P. Chartier, A. N. Langville, and K. E. Pedings, Google PageRank: The mathematics of Google (http://www.whydomath.org/node/google/index.html). Полную информацию, изложенную в доступной форме, вы найдете в книге A. N. Langville and С. D. Meyer, Google’s PageRank and Beyond (Princeton University Press, 2006).