Добавить в цитаты Настройки чтения

Страница 38 из 97

Если требуется более детальный анализ сигнала, оператор, отвечающий за обработку поступающего сигнала, просит дежурного по судну поднять мачту обработки сигналов, толстый телефонный шест, установленный на парусе. Несмотря на свои габариты, ей нужно всего несколько секунд, чтобы получить картину электронной обстановки. Мачта поднимается, «нюхает» воздух и опускается вниз, готовая поделиться богатством полученной информации.

Дежурный по судну может сразу сказать, если перископ обнаружен лучом радара противника, потому что на перископе установлен специальный датчик. Вы можете быть уверены, что сложилась напряженная ситуация, когда вы погрузились на перископную глубину, а датчик кричит, как «сумасшедший». Когда он ведет себя таким образом, то перископ был обнаружен лучом специально разработанного для этой цели высокочастотного радара. В этом случае дежурный по судну обычно опускает перископ, чтобы уменьшить его видимую область. К счастью, перископ снаружи имеет антирадарное покрытие, которое поглощает лучи. Все же, когда вы наблюдаете за учениями китайских ВМС в заливе Бо Хай, приятно осознавать, что «плохие парни» ищут вас, а вы осторожно наблюдаете за ними из-за угла.

ESM — electronic signal measures (англ. «электронная обработка поступающих сигналов»). Большую часть времени техник занимается классификацией и распознаванием поступающих сигналов.

Мачта с инфракрасным детектором иногда используется в качестве отдельной мачты, которая подключена к консоли в центре управления. Мачта фиксирует свет вне видимого спектра лучей в виде теплового излучения. Она различает тёплые и холодные предметы. На консоли имеется ТВ экран, изображение преобразуется с помощью компьютера. Это довольно странная система, потому что она видит сквозь предметы. Если мимо пролетает патрульный самолет, то вы можете видеть сквозь его обшивку: вы видите приборную доску, людей и разные части двигателя. Это очень похоже на рентгеновские лучи.

В случае судна на поверхности система показывает теплый контур корабля на фоне холодного моря. Эта система не очень широко применяется, потому что изображение получается более размытым, чем в объективе перископа, если только объект не находится на близком расстоянии. Пока никому не удавалось «обойти» перископ.

Все знают, как выглядит перископ: окуляр с двумя рукоятками — одна слева, другая справа. Ручка управления увеличением изображения — справа, ручка изменения угла обзора — слева. Современные перископы являются также:

• принимающей радиоантенной,

• мачтой обработки поступающих сигналов,

• прибором, который может делать фото — и записывать видеоизображение.

Видеоповтор изображения с перископа транслируется на экраны в центре управления, в каюте капитана и в вахтенной комнате. Он показывает изображение с перископа, если тот поднят в дневное время (если задание не носит секретный характер). Фотографии могут быть драматичными. Капитаны подлодок любят посылать подписанные всеми членами экипажа фотографии с перископа в рамке своим коллегам, капитанам боевых судов, особенно когда подлодки выигрывают учения.

Одним из малоизвестных свойств перископа является возможность переключения в режим недостаточной освещённости. Он тоже довольно редко используется, потому что может неверно указать расстояние и быть выведенным из строя слишком яркой вспышкой света, которая отображается в объективе перископа как ослепительно белая. Это может нарушить планы дежурного по судну воспользоваться прибором ночного видения. Но когда этот режим применяют, то он похож на прибор ночного видения, используемый в сухопутных войсках.



Очень интересно пользоваться этим режимом, когда перископ только опустился под воду, — вы можете смотреть вниз на корпус подлодки и видеть погрузившееся судно. Немного страшновато!

Это здорово: когда видна цель в окуляре перископа, можно не утруждать себя высчитыванием расстояния при помощи меток в объективе, а просто выпустите лазерный луч в цель и определить расстояние с точностью до сантиметра. У этого устройства есть и недостатки, как и у активного сонара: он излучает поток энергии, который не может взяться из ниоткуда, поэтому он ставит под угрозу скрытность судна. Он может быть обнаружен современным продвинутым оборудованием. Представьте себе, что вы «сидите на хвосте» судна и думаете, что вы видите его, а он вас нет. Вы пытаетесь определить расстояние до него с помощью лазера, а он неожиданно разворачивается и выпускает в вас целую очередь глубинных зарядов. Внезапно вокруг вашего судна начинают наблюдаться взрывы. Затем в вас выпускают торпеду, потом подводные ракеты. И всё кончено.

Вам лучше было воспользоваться «глазами моряка» для определения расстояния. Опытный офицер может с большой степенью точности определить дистанцию до цели, находящейся на поверхности. Насколько точно? Достаточно, чтобы прицелиться и поразить цель. Это называется «огневое решение».

Это ещё одна система, использующая активный сонар, но она установлена на киле подлодки, направлена вниз и посылает очень короткие по длительности сигналы высокой частоты и мощности. Их очень трудно обнаружить, но эта система всё равно не используется в тактической ситуации. Пульсации отражаются от дна и возвращаются. Разница во времени между тем моментом, когда был послан сигнал сонаром, и тем моментом, когда он возвратился, используется для расчета расстояния до дна. По традиции глубина под килем измеряется не в футах или метрах, а в фатомах.

Если приборы показывают, что глубина составляет менее 100 фатомов, то либо у вас большие неприятности, так как вы можете в любой момент сесть на мель, либо вы в тактической ситуации вошли в малые воды (глубина менее 100 фатомов, около побережья), пытаясь проникнуть в порт.

Фатом = 180 сантиметрам.

Оптические датчики, также называемые фотодатчиками, разрабатываются в настоящее время для подлодок класса «Вирджиния». Эта технология сделай ненужным перископ и позволит разместить центр управления не на верхнем уровне, а где-нибудь в другом месте.

С применением оптической технологии изображение сверху передается внутрь корпуса с помощью оптоволоконных кабелей вместо большой трубы с призмами. Это значит, что только один кабель теперь проникает сквозь корпус подлодки. Остальная часть оптоволоконной мачты будет установлена в парусе.

Сонарные системы будущего строятся на современных технологиях с большим уклоном в сторону компьютерного оборудования сонара. В настоящее время сонарные процессоры делят океан на сегменты и осуществляют поиск нужной частоты. Более мощные компьютеры могут осуществлять поиск частот во всём спектре. Для этого компьютер должен будет обрабатывать в несколько миллиардов раз больше информации в секунду, чем сегодня. Более продвинутые компьютеры позволят осуществлять поиск в широкополосном диапазоне по компасу, а не в каком-то конкретном секторе. В будущем система кормовых сонаров, тянущихся за подлодкой, будет артикулированной, где каждая частичка «знает» положение в пространстве относительно другой частички. Специальные датчики будут проводить пространственно-временной анализ для определения примерного расстояния цели, не требуя маневров от судна.