Добавить в цитаты Настройки чтения

Страница 199 из 203



— Ну вот, — сказал я.

— А можно теперь есть?

— Конечно. Ты понял, что произошло?

— М-мм… Я отрезал восемь одинаковых порций коврижки?

— Ты так говоришь, будто это просто… но на самом деле мы проделали сложный путь, — сказал я. — Вспомни, несколько минут назад ты знал, как отрезать четыре порции. Знал, как отрезать шестнадцать. Девять — запросто. Но ты не знал, как отрезать восемь. Задача казалась неразрешимой. Однако мы хорошенько подумали и нашли ответ. И не приблизительный, а совершенно точный.

КАЛЬК 2. Гемново (конфигурационное) пространство

Приложение к «Анафему» Нила Стивенсона

Так получилось, что, пока мы расхаживали туда-сюда, кто-то из нас задел ногой пустую винную бутылку, и она осталась лежать на кухонном полу вот так:

Пол был из дощечек, собранных в квадраты, что навело меня на мысль о координатной плоскости.

— Принеси доску и кусок мела, — сказал я Барбу.

Мне немножко стыдно было его так гонять, но я злился, что он мне не помог. Барб вроде бы не возражал и быстро выполнил просьбу, потому что доски и мел для записи рецептов и продуктов для готовки лежали по всей кухне.

— Теперь сделай мне одолжение: запиши на доске координаты бутылки.

— Координаты?

— Да. Считай рисунок пола лесперовой координатной сеткой. Давай договоримся, что сторона квадратика — единица. Я кладу картофелину сюда — это будет начало координат.

— Ну, тогда бутылка примерно на (2,3). — Барб некоторое время скрипел мелом, потом развернул доску ко мне.

Вот, это уже конфигурационное пространство — почти самое простое, какое можно вообразить, — сказал я. — Положение бутылки — (2,3) — точка в этом пространстве.

— Тогда это просто обычное двумерное пространство, — возмутился Барб. — Почему ты так не говоришь?

— Можешь добавить ещё колонку?

— Конечно.

— Обрати внимание, что бутылка лежит не прямо. Она повёрнута примерно на одну десятую пи — или, в единицах, к которым ты привык в экстрамуросе, примерно на двадцать градусов. Угол поворота будет третьей координатой конфигурационного пространства — третьей колонкой в твоей таблице.

Барб взял мел и написал:

— Ладно, теперь это уже не просто скучное двумерное пространство, — признал он. — У него три измерения, и третье — необычное. Похоже на то, что нам объясняли в сувине…

— Полярные координаты? — спросил я, поражённый, что Барб про них знает. Видать, Кин потратил кучу денег, чтобы отправить его в хорошую сувину.

— Ага! Угол вместо расстояния.

— Давай посмотрим, как это пространство себя ведёт. Я буду двигать бутылку, а ты — отмечать её координаты всякий раз, как я скажу.

Я подвинул бутылку и немножко её повернул.

— Отмечай. Отмечай. Отмечай.

Я сказал:

— Видишь, множество точек в конфигурационном пространстве такое же, как если бы я нечаянно пнул бутылку, и она покатилась по полу. Согласен?

— Да. Я как раз сам так подумал!



— Но я двигал её медленно, чтобы тебе удобнее было записывать.

Барб не понял, как отвечать на мою убогую шутку. После неловкой паузы я продолжил:

— А можешь теперь составить график? Отметить эти точки на трёхмерном графике?

— Могу, — неуверенно протянул Барб. — Только это будет странно.

— Пунктир внизу показывает только xи y, — объяснил Барб. — Путь бутылки на полу.

— Хорошо, потому что пока ты не привык к конфигурационному пространству, остальное тебе будет непонятно, — сказал я. — Путь на плоскости xy, который ты показал пунктиром, вполне знаком нам по адрахонесову пространству — он просто показывает, как бутылка двигалась по полу. А вот третья координата — угол — совершенно другая история. Она показывает не буквальное расстояние в пространстве, а то, насколько повернулась бутылка. Как только ты это понял, ты можешь считать её прямо с графика и сказать: «Ага, бутылка лежала под углом двадцать градусов, а пока катилась по полу, повернулась ещё на триста». Но если ты не знаешь тайного шифра, ты ничего не поймёшь.

— И зачем это нужно?

— Представь, что у тебя что-нибудь посложнее одной бутылки на полу. Например, бутылка и картофелина. Тогда тебе нужно десятимерное конфигурационное пространство, чтобы описать состояние системы бутылка-картофелина.

— Десяти?

— Пять для бутылки и пять для картофелины.

— Откуда пять? У нас всего три координаты для бутылки!

— Ну, мы сжульничали. Не учли ещё две вращательные степени свободы, — сказал я.

— То есть?

Я сел на корточки и положил руку на бутылку. Она лежала этикеткой к полу.

— Смотри, я поворачиваю её вокруг длинной оси, чтобы прочесть этикетку. Этот угол поворота — совершенно отдельное число, независимое от того, который ты отмечал на доске. Для него нам нужна ещё одна координатная ось. — Я взял бутылку, поставил на донышко и наклонил, так что теперь её горлышко смотрело под углом к полу, как дуло артиллерийского орудия. — А то, что я делаю сейчас — ещё одно независимое вращение.

— Так что уже пять, — сказал Барб, — только для бутылки.

— Да. Чтобы взять самый общий случай, надо добавить шестую ось, чтобы отмечать вертикальные перемещения. — Я приподнял бутылку над полом. — Так что нам нужны шесть измерений нашего конфигурационного пространства только для положения и ориентации бутылки. — Я поставил её обратно. — Но если мы ограничимся полом, то хватит и пяти.

— Ладно, — сказал Барб. Он так говорил, только когда что-нибудь окончательно понимал.

— Я рад, что ты согласен. Думать в шести измерениях трудно.

— Я думаю просто о шести колонках на моей доске вместо трёх, — сказал он. — Но я не понимаю, зачем нужно ещё шесть измерений для картофелины. Почему не воспользоваться теми шестью, которые у нас уже есть для бутылки.

— Мы ими и пользуемся, — объяснил я, — но записываем числа в отдельные колонки. Тогда каждая строка таблицы содержит в себе всё, что нам нужно знать о системе бутылка-картофелина в данный момент времени. Каждая строка — двенадцать чисел, дающих нам x, yи zбутылки, её угол отлетания от пинка, угол чтения этикетки, угол наклона и всё то же самое для картофелины, — точка в двенадцатимерном конфигурационном пространстве. И теорам это становится полезным, например, когда мы соединяем точки и получаем траектории в конфигурационном пространстве.

— Когда ты говоришь «траектория», мне представляется что-то, летящее по воздуху, — ответил Барб. — Я не понимаю, что ты имеешь в виду, когда речь о двенадцатимерном пространстве, которое вовсе и не пространство.

— Давай упростим до предела. Будем двигать бутылку с картофелиной только по оси xи забудем про вращение.

Я положил их так:

— Можешь отметить у себя на доске их координаты по оси x?

— Конечно. — И через несколько секунд Барб показал мне такую табличку:

— Сейчас я их столкну. Медленно, конечно. Постарайся записывать координаты, если успеешь.

Я начал двигать картофелину и бутылку, останавливаясь и говоря: «Отмечай» всякий раз, как хотел, чтобы он добавил новую строчку к таблице.