Добавить в цитаты Настройки чтения

Страница 4 из 18



Эрвин Шредингер (1887-1961) — лауреат Нобелевской пре­мии в области физики. Он родился в Германии, долго жил в Австрии, но своими трудами прославился в Оксфорде (Англия), стоял у истоков открытия ДНК. Выше приводится цитата из его книги What is Life? (Что есть жизнь?).

Оба свойства живого реализуются только за счет нали­чия информации о том, как это делать. Способность к раз­множению становится возможной благодаря наличию пла­на построения нового организма. План построения кроль­чонка находится в яйцеклетке кролика. В свою очередь, способность к упорядочению материи с помощью метабо­лизма также основана на положительной информации — плане организации тканей и систем организма. Взрослый кролик с его способностями к размножению и метаболиз­му предопределен в нити ДНК яйцеклетки, точно так же, как пирог предопределен в рецепте поваренной книги. Эта идея перекликается с высказыванием Аристотеля в том, что «суть» цыпленка скрыта в яйце, а желудь наделен пла­ном будущего дуба. Туманные представления Аристотеля об информатике, погребенные под наслоениями следующих поколений физиков-механиков, были возвращены к жиз­ни в исследованиях современных генетиков. Как пошутил Макс Дельбрюк (Max Delbriick), греческих мудрецов следо­вало бы наградить Нобелевской премией посмертно за от­крытие ДНК (Campbell J. 1983. Grammatical man: information, entropy, language and life.Allen Lane, London).

Макс Дельбрюк (1906-1981) - родился в Берлине, но на­учную карьеру сделал в США. В 1969 году был удостоен Нобелевской премии за создание математической модели мутаций у микроорганизмов.

Нить ДНК — это письмо, записанное с помощью алфа­вита химических соединений, называемых нуклеотидами. Одна буква — один нуклеотид. Невероятно просто, даже не верится, что код жизни записан символами, которые мы можем свободно прочитать. Точно так же, как текст на английском языке, генетический код представляет собой строку символов. Так же, как в обычном тексте, символы ал­фавита совершенно равнозначны, а значение имеют лишь их комбинации. Более того, язык ДНК проще английско­го, так как генетический алфавит состоит лишь из четырех букв: А, С, G и Т.

Удивительно, как людям удалось постичь алфавит жиз­ни? В первую половину XX столетия вопрос «Что такое ген?» не давал покоя биологам. Казалось, что человечество никогда не найдет ответа на этот вопрос. Давайте вернем­ся даже не в 1953 год, когда была открыта симметричная структура ДНК, а еще на 10 лет назад, в 1943 год. Те, кому суждено будет через 10 лет раскрыть тайну жизни, в это время работали совсем над другими темами. Фрэнсис Крик (Francis Crick) разрабатывал морскую мину в лаборатории недалеко от Портсмута. В это же время Джеймс Уотсон (James Watson) только поступил в свои беспокойные 15 лет в Чикагский университет, решив посвятить свою жизнь ор­нитологии. Морис Уилкинс (Maurice Wilkins) участвовал в разработке атомной бомбы в США. Розалинда Франклин (Rosalind Franklin) изучала структуру каменного угля по программе правительства Великобритании.

В том же 1943 году в Освенциме Иозеф Менгеле (Josef Mengele) как гротескную пародию на научные исследова­ния ставит бесчеловечные эксперименты на близнецах. Менгеле пытается разобраться в наследственности, но его теория евгеники оказалась тупиковой и бесплодной вет­вью, отвергнутой будущей наукой.



В Дублине в 1943 году, бежавший от Менгеле и ему подоб­ных, великий физик Эрвин Шредингер (Erwin Schrodinger) выступает в колледже Тринити с серией лекций на тему «Что есть жизнь?». Он пытается обозначить проблему. Ему известно, что секрет жизни хранится в хромосоме: «Именно хромосомы ... содержат что-то вроде кода, полно­стью определяющего будущее строение и развитие индиви­дуума, а также его функционирование в зрелом возрасте». Ген, по мнению Шредингера, настолько мал, что не может быть ни чем иным, как большой молекулой. Это прозрение затем вдохновит целое поколение ученых, включая Крика, Уотсона, Уилкинса и Франклин, на изучение проблемы, ко­торая оказалась вполне решаемой. Подойдя столь близко к ответу, Шредингер сворачивает в сторону. Он полагает, что секрет передачи наследственности с помощью молекул ле­жит в его любимой квантовой теории и, увлекаемый этим наваждением, заходит в тупик. Секрет жизни не имеет ни­чего общего с квантовой теорией. Физика здесь ни при чем (Schrodinger Е. 1967. What is life? Mind and matter.Cambridge University Press, Cambridge).

В Нью-Йорке в 1943 году шестидесятишестилетний ка­надский ученый Освальд Эйвери (Oswald Avery) завершает грандиозный эксперимент, доказывающий причастность ДНК к наследственности. Проведя серию сложных экспе­риментов, он показал, что бактерию, вызывающую пнев­монию, можно трансформировать из безвредной формы в агрессивную, обработав некоторыми химическими пре­паратами. Эйвери доказал, что передача признака связана исключительно с очищенной ДНК. В научной статье он из­ложил свое открытие в столь осторожной форме, что суть открытия смогли понять лишь немногие, и то значительно позже. Лишь в своем письме брату, написанном в 1943 году, Эйвери позволил себе говорить более открыто: «Если мы правы, что, безусловно, пока еще не доказано, то из этого следует, что нуклеиновая кислота (ДНК) не только струк­турно необходима, но и является функционально активной субстанцией, определяющей биохимическую активность и специфические характеристики клеток. Другими словами, становится возможным посредством определенной хими­ческой субстанции целенаправленно изменять клетки и де­лать эти изменения наследуемыми. Это именно то, о чем генетики мечтали долгие годы» (Judson Н. Е 1979. The eight day of creation.Jonathan Cape, London).

Эйвери почти удалось раскрыть секрет жизни, но он все еще мыслит категориями химии. «Вся жизнь — это хи­мия», — предположил в 1648 году Ян Баптист ван Гельмонт (Jan Baptista van Helmont). «По крайней мере часть жизни — это химия», — сказал Фридрих Велер (Friedrich Wohler) в 1828 году, когда ему удалось синтезировать мочевину из хлорида аммония и цианида серебра, разрушив тем самым священную стену, разделяющую миры химии и биологии. До этого считалось, что мочевина — это присущее только живой материи вещество, которое невозможно синтезиро­вать из обычных химических соединений. Представление о том, что жизнь — это химия, справедливо, но скучно, как и высказывание по поводу того, что футбол — это физика. Жизнь с некоторой натяжкой можно представить как хи­мию всего трех элементов — водорода, углерода и кисло­рода, на долю которых приходится 98% живой массы. Но биология изучает такие сложные проявления жизни, как наследственность, — вот что их интересует, а не химиче­ский состав. Эйвери не может понять, что такого есть в хи­мической молекуле ДНК, что могло бы объяснить явление наследственности. Ответ будет найден не в области химии.

В английском городе Блечли (Bletchley) в 1943 году засе­креченный великолепный математик Алан Тьюринг (Alan Turing) подошел к величайшему открытию — принципу ра­боты вычислительной техники. Разобравшись в работе не­мецкой военной шифровальной машины Лоренца, Тьюринг создает первый компьютер, названный им Colossus. В осно­ву универсальной вычислительной машины Тьюринга легла изменяемая и сохраняемая программа. Никто не осознал в то время, и даже сам Тьюринг, что он, вероятно, ближе всех подошел к раскрытию секрета жизни. Наследственность — это изменяемая и сохраняемая программа, а метаболизм — универсальная машина. Их связывает между собой код — си­стема абстрактных сообщений, которые могут быть записа­ны не важно в чем — в химических веществах, физических явлениях или даже в нематериальной форме. Основной секрет лежит в самовоспроизведении. Все, что может ис­пользовать ресурсы окружающего мира для копирования себя, — это форма жизни. А наиболее вероятной формой жизни может быть дижиталъноесообщение — число или слово (Hodges А. 1997. Turing.Phoenix, London).

 Термин digital на русский язык переводится как число­вой код или сообщение, что не совсем верно, поскольку в основе кода могут лежать не только цифры, но любые дискретные символы - буквы, знаки, нуклеотиды.