Добавить в цитаты Настройки чтения

Страница 81 из 90

Но не все было благополучно в протонно-нейтронной модели. Изгнание электрона из ядра лишило его «электронного цемента», ранее связывавшего положительные заряды протонов. Что же теперь удерживает их в ядре вместе с нейтральными нейтронами, несмотря на взаимное отталкивание одноименных зарядов?

Были и другие подводные камни, например бета распад. С бета-распадом все давно было ясно. Нейтрино придало теории бета-распада характер полной достоверности. Но теперь бета-распад мог оказаться роковым для протонно-нейтронной модели ядра. Многолетний опыт показывал, что при распаде многих ядер из них вылетают электроны. Спрашивается, как может вылететь из ядра то, чего там нет?

Гейзенберг, спасая бета-распад и протонно-электронную модель ядра, отвел последнее возражение новой гипотезой. Он предположил, что нейтрон в радиоактивных ядрах может превращаться в протон, электрон и нейтрино. Протон при этом остается в ядре, электрон и нейтрино вылетают, как и положено во время бета-распада.

Замечательным в этой гипотезе был новый подход к нейтрону. Эта вновь открытая элементарная частица объявлялась сложной, способной порождать другие элементарные частицы. Но при этом она сохраняла и свойства настоящей элементарной частицы. Ведь электрон, магнитные свойства которого в тысячу раз больше, чем у нейтрона, не может постоянно быть его' составной частью. Он не может просто входить в нейтрон как индивидуальная частица. Он должен рождаться из него при подходящих условиях.

Но новая гипотеза Гейзенберга не превратила протонно-нейтронную модель из гипотезы в теорию. Ведь оставался открытым вопрос о ядерном цементе. А кроме того, гипотеза, придумываемая для объяснения единичного факта — для спасения другой гипотезы, — всегда встречается с недоверием. Тем более что для ее обоснования нужно было еще объяснить, почему нейтрон остается устойчивым в ядрах, не испытывающих бета-распада, и почему никто не видел распада свободных нейтронов.

Так физики похоронили спорную гипотезу бетараспада и отложили в число сомнительных обе модели ядра. Ведь каждая из них приводила к непреодолимым трудностям. Пока теоретики рассуждали о таинственных свойствах ядра, экспериментаторы продолжали охоту за тайнами природы.

Счастливый случай и наблюдательность позволили Андерсону обнаружить на фотопластинке, экспонированной во время опытов с космическими частицами, след, который могла оставить только частица, во всем тождественная электрону, но имеющая положительный заряд. Это действительно был положительный электрон — первая античастица, попавшаяся на глаза ученым. Его существование еще с 1928 года было предсказано Дираком, преобразовавшим волновое уравнение Шредингера в соответствии с требованиями теории относительности.

Позитрон в нашем мире не может жить долго. Он быстро соединяется со встречным электроном, превращаясь в квант электромагнитного поля.

Открытие позитрона не только подтвердило теорию Дирака и глубокую общность между электромагнитным полем и элементарными частицами, но и послужило косвенной поддержкой гипотезы Гейзенберга. Если электрон и позитрон могли превращаться в фотоны, то менее странной казалась возможность превращения нейтрона в протон и электрон.

Вскоре было обнаружено, что некоторые искусственные радиоактивные элементы распадаются с испусканием позитронов. Это была, несомненно, новая форма бета-распада. Это была и новя поддержка гипотезы Гейзенберга. Достаточно предположить, что при этом протон внутри ядра превращается в нейтрон и позитрон, и теория позитронного бета-распада готова. Так вновь опыт давал намек на сложную природу элементарных частиц.

Протон и нейтрон могли оказаться разновидностями одной и той же частицы или просто превращаться друг в друга, причем в этих превращениях участвовала несомненная пара — электрон и позитрон.





До того как принять одну из этих догадок за истину или создать другую теорию, нужно было обязательно понять, почему эти превращения происходят только внутри радиоактивных ядер, а в других ядрах и в свободном состоянии ни протон, ни нейтрон не распадаются.

Но прежде чем приняться за эту сложную работу, пришлось признать права гражданства еще одной частицы-невидимки, еще одного нейтрино. Это нейтрино необходимо для обеспечения закона сохранения при позитронном бета-распаде, так же как первое нейтрино стало неизбежным участником обычного бета-распада.

Оказалось, оба нейтрино почти тождественны между собой. Они должны были отличаться только одной характеристикой, знаком особой величины, играющей роль только в микромире. Эта величина называется спином. В обычном мире больших вещей на спин больше всего похоже упрямство вращающегося волчка, который противится всякой попытке наклонить его ось. У большинства микрочастиц есть что-то похожее на это стремление сохранить направление какого-то подобия оси. Приняв эту аналогию, можно говорить, что микрочастицы, имеющие спин, как бы вращаются. Тогда, если первое из нейтрино вращается по часовой стрелке, то второе — в противоположном направлении (если смотреть вдоль линии полета частицы). Новая частица получила наименование антинейтрино.

К курьезам на тропах науки относится тот факт, что со временем нейтрино и антинейтрино пришлось поменяться именами. Первому нейтрино, рождающемуся вместе с протоном и электроном при распаде нейтрона, ученые присвоили частицу -«анти», а второе, рождающееся вместе с нейтроном и позитроном при распаде протона, назвали просто нейтрино.

Это переименование объясняется не капризами физиков, а требованиями симметрии, регулирующими все процессы в микромире. В каждом из этих распадов рождается по одной античастице. В первом из нейтрона рождается антинейтрино (наряду с двумя обычными частицами), а во втором из протона рождаются позитрон (античастица электрона) и две обычные частицы нейтрон и нейтрино.

Так в результате совместных усилий теоретиков и экспериментаторов число «кирпичей мироздания», сильно уменьшившееся после отречения от этой роли атомов, снова возросло. В начале тридцатых годов к семье элементарных частиц принадлежали: фотон, пара — нейтрино и антинейтрино, пара — электрон и позитрон и две «тяжелые» ядерные частицы — протон и нейтрон.

Картина строения материи снова приобрела заманчивую ясность, но вопрос о причинах устойчивости атомных ядер оставался нерешенным. Никакое из двух известных силовых полей: ни гравитационное (поле тяготения), ни электромагнитное не могли удержать одноименно заряженные протоны и нейтральные нейтроны внутри ядра, размер которого составляет примерно стотысячную долю от миллиардной части сантиметра.

В 1932 году советский физик Тамм высказал предположение, что, может быть, электроны являются источниками еще неизвестного неэлектромагнитного поля, придающего ядру атома столь прочное строение. Может быть, электроны — это кванты поля, с которым связаны ядерные силы? Но когда Тамм произвел расчет, оказалось, что поле, квантами которого могли бы быть электроны, в тысячу миллиардов раз меньше, чем действительные ядерные силы. Поскольку в то время другие частицы, кроме электронов, подходящие для роли квантов поля ядерных сил, не были известны, Тамму пришлось поставить на этом точку.

Как видно, нужно было поставить вопрос: а какова должна быть частица, дающая такое поле? И, получив на бумаге такую частицу, дать «технические условия» экспериментаторам на ее поиски. Так это и случилось. Работа Тамма была продолжена. И решающий шаг, приведший к открытию цемента, скрепляющего протонно-нейтронное ядро, сделал в 1935 году японский физик-теоретик Юкава. Он написал уравнение для ядерных частиц, чтобы с его помощью узнать, какова должна быть природа сил, скрепляющих ядро. Это уравнение в своей абстрактной математической форме объединяло колоссальную мощь теории относительности и квантовой механики. Одно из его решений давало хорошо известные фотоны — частицы электромагнитного поля с массой покоя, равной нулю. Но силы электромагнитного поля могли только расталкивать одноименно заряженные протоны. На нейтроны они просто не действуют. Это решение не годилось для получения ответа на загадки ядра.