Добавить в цитаты Настройки чтения

Страница 80 из 90

Выход указал молодой физик-теоретик Паули. Он предположил, что при бета-распаде из ядра вылетает еще одна частица, ускользающая от экспериментаторов. Она-то и уносит с собой ту часть энергии, которой не хватает для соблюдения баланса, для выполнения закона сохранения.

Паули подробно описал свойства этой гипотетической частицы: она нейтральна, поэтому ее нельзя зафиксировать так, как фиксируют заряженные частицы; она движется очень быстро, возможно со скоростью света, поэтому ее масса покоя мала, возможно равна нулю. Словом, это частица, которую очень трудно, а может быть, и невозможно обнаружить. В соответствии с ее свойствами она не должна была принимать участия ни в каких процессах, кроме бета распада.

Физики с трудом примирились с «появлением» новой частицы. Уж очень необычными должны были быть ее свойства. Трудно было поверить, что природа создала ее специально для участия в бета-распаде. Но сознание, что закон сохранения энергии незыблем, было сильнее этих сомнений, и ученые вскоре признали частицу Паули и ввели ее в семью элементарных частиц. Итальянский физик Ферми стал ее крестным отцом, дав ей имя нейтрино и создав на основе нейтрино последовательную теорию бета распада.

Благодаря протонно-электронной модели ядра все в микромире постепенно приобрело удивительную ясность. Имеются три кирпича мироздания: отрицательный электрон, положительный протон (масса которого примерно в две тысячи раз превосходит массу электрона) и нейтральный фотон (имеющий ничтожную массу, связанную с его движением). Эта частица не может остановиться, ибо ее масса покоя равняется нулю. Есть еще уродец нейтрино, но с этим можно было не считаться. Нейтрино не участвовали в мироздании. Рождаясь при сравнительно редких случаях бета-распада, они бесследно исчезали.

Из протонов, связанных электронами, образуются ядра атомов. Электроны, летающие вокруг ядер по устойчивым боровским орбитам, превращают атомы в законченные нейтральные конструкции со всем многообразием их физических и химических свойств. Фотоны рождаются и гибнут в процессах перескока электронов с орбиты на орбиту.

Блестящая гармония протонно-электронной модели, покоящаяся на кратности атомных весов, не нарушалась даже тем, что атомные веса некоторых элементов сильно отличаются от целых чисел. Это была лишь кажущаяся трудность. Ведь такие отклонения наблюдаются только для элементов, имеющих по несколько изотопов, открытых молодым английским физиком Астоном. Он установил, что атомы изотопов химически тождественны и имеют целочисленные атомные веса. Измеренные прежними способами, атомные веса природных элементов оказывались некратными весу протона только потому, что природные элементы содержат случайное (хотя и одинаковое во всех случаях) сочетание изотопов.

Особенно разителен пример с хлором. Как известно, его атомный вес равен 35,5. Такое нецелое число получается потому, что природный хлор на одну четверть состоит из изотопа хлора с атомным весом 35 и на три четверти из изотопа хлор-37.

Однако Астону, погибшему в первой мировой войне вскоре после своего открытия, не довелось узнать, что его метод измерения атомных весов едва не погубил протонно-электронную модель ядра. Повышающаяся точность эксперимента чуть не опрокинула все это стройное здание. Оказалось, что атомные веса изотопов все же отличаются от простых целых чисел сильнее, чем это можно объяснить за счет ошибок измерения.

Но положение было спасено введением «дефекта массы». Ведь для того, чтобы ядра были устойчивыми, частицам должно быть выгоднее существовать внутри ядра, чем вне его. А это значит, что при их объединении в ядро должна выделяться энергия (та же, которую надо затратить для разрушения ядра). Но в соответствии с теорией относительности потеря энергии эквивалентна потере массы и поэтому масса ядра должна быть меньше, чем сумма масс входящих в него частиц.

Таким образом, протонно-электронная модель не только не погибла, но с учетом дефекта массы еще прочнее оперлась на опыт, который при этом подтверждал не только справедливость модели ядра, но и факт выполнения закона сохранения энергии при ядерных превращениях.

Опыт — верховный судья. Это признают все здравомыслящие ученые. Но бывает, что этот судья говорит на языке, еще непонятном людям, и они должны научиться переводить указания опыта на человеческий язык при помощи формул и понятий, полученных на основе предыдущего опыта. Бывает также, что переводчики ошибаются и оправдательный приговор выдают за обвинительный.

Еще чаще случается, что обрадованный переводчик недослушает приговор и спешит осчастливить подсудимого, и тот готовится бежать на пир, а его ведут в темницу. Получается почти как у Пушкина: «Глухой глухого звал к суду судьи глухого...» Так случилось и в этот раз.





Действительность многогранна, и опыт, только что истолкованный в духе протонно-электронной модели, обнаружил новые черты элементарных частиц. Выяснилось, что протоны и электроны представляют собой миниатюрные магнитики, причем легкие электроны обладают примерно в две тысячи раз большим магнетизмом, чем тяжелые протоны.

Здесь не было ничего удивительного. Просто новый, хотя еще и не объясненный факт. Но опыт пока зал также, что магнитные свойства всех ядер по величине близки к магнетизму протона! Как же слабенькие магнитики-протоны уничтожали в ядре «огромный» магнит электрона? Ведь уже в тяжелом водороде — дейтерии в соответствии с моделью должны быть два протона и один электрон. Но магнетизм его не только не равен магнетизму электрона, но в три раза меньше, чем магнетизм протона. А это примерно в 5 тысяч раз меньше, чем можно ожидать от протонно-электронной модели.

Вмешался опыт и в выводы квантовой статистики. Эта статистика предопределяла свойства ядер на основе простого подсчета числа содержащихся в них протонов и электронов. Ядра с четным числом частиц должны всегда отличаться от ядер с нечетным числом частиц.

Но опыт в ряде случаев отвергал эти предсказания.

Трудно было понять и то, как электрон, дебройлевская волна которого значительно больше размеров ядра, помещался внутри него. Не вязались между собой и некоторые другие опытные факты. Итак, опыт, накопившийся к 1932 году, объявил протонно-электронную модель ядер, утвердившуюся даже в учебниках, незаконной.

Казалось, микромир заманил ученых в глухой тупик.

Правильный путь обнаружился совершенно неожиданно. Как говорят, не было бы счастья, да несчастье помогло. В 1932 году Чедвик, один из учеников Резерфорда, открыл новую частицу. Это разрушило до основания стройное здание микромира, покоившееся на трех микрокитах — протоне, электроне и фотоне. Четвертому киту не оказалось места. И он не только разрушил фундамент, казавшийся незыблемым, но и посеял сомнение в том, является ли открытие новой частицы последним.

Разрушение может стать началом созидания. Скоро выяснилось, что вновь открытая частица — нейтрон, названная так вследствие того, что она была электрически нейтральной, по массе очень близок к протону и обладает магнетизмом.

Этого было достаточно, чтобы предложить новую модель ядер. Иваненко в СССР и Гейзенберг в Германии предположили, что ядра состоят только из протонов и нейтронов. Ядро водорода содержит 1 протон (имеет заряд, равный единице, и атомный вес, равный единице). Следующее по сложности ядро тяжелый водород — дейтерий. Оно содержит 1 протон и 1 нейтрон (заряд — 1, вес — 2). Следующий — сверхтяжелый водород — тритий. Его состав — 1 протон и 2 нейтрона, затем гелий — 2 протона и 2 нейтрона (заряд — 2 и вес — 4). Существует и «легкий гелий» — гелий-3. Его атомный вес равен 3, заряд 2, в его ядре 2 протона и всего 1 нейтрон. Дальше все шло как по нотам, в полном согласии с таблицей Менделеева.

Новая модель легко отвечала на вопросы, оказавшиеся роковыми для старой. Магнитные свойства всех ядер в соответствии с опытом оказывались близкими к магнитным свойствам протонов и нейтронов. Отпали и возражения квантовой статистики. Например, азот, который по старой модели «был» нечетным (14 протонов и 7 электронов), в новой модели «стал» четным (7 протонов и 7 нейтронов), как и должно быть в соответствии с опытом. Стало ненужным придумывать специальные гипотезы, чтобы «втиснуть» дебройлевские волны электрона в ничтожный объем ядра.